Skip to main content
Log in

Fine structure of convective motions in the solar photosphere: Observations and theory

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The granulation brightnesses and convective velocities in the solar photosphere between the levels of formation of the continuum radiation and the temperature minimum are examined. Spectral images of the granulation observed in lines of neutral and ionized iron with high spatial (0.5″) and temporal (9 s) resolutions were obtained using the German Vacuum Tower Telescope in Izana (Tenerife, Spain). A correlation analysis shows that the granules and intergranules change their relative brightness at a height near 250 km, and a general reversal of the velocity occurs near a height of 490 km, where the material above granules begins to predominantly descend, and the material above intergranules, to ascend. The maximum correlation coefficient between the velocity and the line brightnesdoesnot exceed 0.75. The properties of the brightness and velocity are analyzed in a sixteen-column model. Four sorts of motions are most typical and efficient. In the first two, only the sign of the relative contrast of the material changes (an efficiency of 46%). This occurs, on average, at a height of 270 km. In the last two motions, both the sign of the contrast and the direction of the motion are reversed near a height of 350 km (an efficiency of 28%). All the observed dependences are compared with theoretical relations obtained in a three-dimensional hydrodynamical model, with deviations from local thermodynamic equilibrium included in the calculation of the spectral-line profiles. This model can satisfactorily reproduce all the basic features of the convective velocities and intensities. It is concluded that the convective motions maintain their column structure throughout the photosphere, right to the level of the temperature minimum. This makes a separation of the photosphere into two regions with different granulation brightnesses and convective motions unjustified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Hansky, Pulkovo Mitt. 3, 1 (1908).

    Google Scholar 

  2. A. Unsold, Z. Astrophys. 1, 138 (1930).

    ADS  Google Scholar 

  3. R. S. Richardson and H. Schwarzschild, Astrophys. J. 111, 351 (1950).

    ADS  Google Scholar 

  4. V. A. Krat and A. A. Shpital’naya, Soln. Dannye, No. 2, 63 (1974).

    Google Scholar 

  5. V. N. Karpinskii, Soln. Dannye, No. 2, 91 (1980).

    ADS  Google Scholar 

  6. V. N. Karpinsky, Solar Photosphere: Structure, Convection, and Magnetic Fields, Ed. by J. O. Stenflo (Kluwer, Dordrecht, 1990), p. 67.

    Google Scholar 

  7. O. Espagnet, R. Muller, Th. Roudier, et al. Astron. Astrophys., Suppl. Ser. 109, 79 (1995).

    ADS  Google Scholar 

  8. G. Salucci, L. Bertello, F. Gavillini, et al., Astron Astrophys. 285, 322 (1994).

    ADS  Google Scholar 

  9. A. Nesis, R. Hammer, M. Roth, and H. Schleicher, Astron. Astrophys. 396, 1003 (2002).

    Article  ADS  Google Scholar 

  10. A. Hanslmeier, A. Kučera, J. Rýbak, et al., Astron Astrophys. 356, 308 (2000).

    ADS  Google Scholar 

  11. M. Asplund, Å. Nordlund, R. Trampedach, et al., Astron. Astrophys. 359, 729 (2000).

    ADS  Google Scholar 

  12. E. H. Schröter, D. Soltau, and E. Wiehr, Vistas Astron. 28, 519 (1985).

    ADS  Google Scholar 

  13. L. Delbouille, L. Neven, and C. Roland, Photometric Atlas of the Solar Spectrum from λ3000 to λ10 000 (Institut d’Astrophysique de l’Université de Liège, Liège, Belgium, 1973).

    Google Scholar 

  14. R. T. Stebbins and P. R. Goode, Solar Phys. 110, 237 (1987).

    Article  ADS  Google Scholar 

  15. E. V. Khomenko, R. I. Kostik, and N. G. Shchukina, Astron. Astrophys. 369, 660 (2001).

    Article  ADS  Google Scholar 

  16. R. I. Kostyk and N. G. Shchukina, Pis’ma Astron. Zh. 25, 781 (1999) [Astron. Lett. 25, 678 (1999)].

    Google Scholar 

  17. R. I. Kostyk and E. V. Khomenko, Astron. Zh. 79, 1027 (2002) [Astron. Rep. 46, 925 (2002)].

    Google Scholar 

  18. R. I. Kostyk, Astron. Zh. 62, 112 (1985) [Sov. Astron. 29, 65 (1985)].

    ADS  Google Scholar 

  19. M. Steffen, H. G. Ludvig, and A. Kruss, Astron. Astrophys. 213, 371 (1989).

    ADS  Google Scholar 

  20. A. S. Gadun, Kinemat. Fiz. Neb. Tel 11(3), 54 (1995).

    Google Scholar 

  21. A. S. Gadun, S. K. Solanki, and A. Johannesson, Astron. Astrophys. 350, 350 (1999).

    Google Scholar 

  22. N. G. Shchukina and J. Trujillo Bueno, Astrophys. J. 550, 970 (2001).

    Article  ADS  Google Scholar 

  23. L. H. Auer, P. Fabiani Bendicho, and J. Trujillo Bueno, Astron. Astrophys. 292, 599 (1994).

    ADS  Google Scholar 

  24. N. G. Shchukina and J. Trujillo Bueno, Kinemat. Fiz. Neb. Tel 14(4), 315 (1998).

    Google Scholar 

  25. A. Kučera, J. Rýbak, and H. Wöhl, Astron. Astrophys. 298, 917 (1995).

    ADS  Google Scholar 

  26. J. W. Evans and C. P. Catalano, Solar Phys. 27, 299 (1972).

    Article  ADS  Google Scholar 

  27. H. Holweger and F. Kneer, Solar and Stellar Granulations, Ed. by R. J. Rutten and G. Severino (Kluwer, Dordrecht, 1989), p. 173.

    Google Scholar 

  28. A. S. Gadun, A. Hanslmeier, A. Kucera, et al., Astron. Astrophys. 363, 289 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 81, No. 9, 2004, pp. 846–858.

Original Russian Text Copyright © 2004 by Kostyk, Shchukina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyk, R.I., Shchukina, N.G. Fine structure of convective motions in the solar photosphere: Observations and theory. Astron. Rep. 48, 769–780 (2004). https://doi.org/10.1134/1.1800177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1800177

Keywords

Navigation