Skip to main content
Log in

Relativistic effects and solar oblateness from radar observations of planets and spacecraft

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We used more than 250 000 high-precision American and Russian radar observations of the inner planets and spacecraft obtained in the period 1961–2003 to test the relativistic parameters and to estimate the solar oblateness. Our analysis of the observations was based on the EPM ephemerides of the Institute of Applied Astronomy, Russian Academy of Sciences, constructed by the simultaneous numerical integration of the equations of motion for the nine major planets, the Sun, and the Moon in the post-Newtonian approximation. The gravitational noise introduced by asteroids into the orbits of the inner planets was reduced significantly by including 301 large asteroids and the perturbations from the massive ring of small asteroids in the simultaneous integration of the equations of motion. Since the post-Newtonian parameters and the solar oblateness produce various secular and periodic effects in the orbital elements of all planets, these were estimated from the simultaneous solution: the post-Newtonian parameters are β = 1.0000 ± 0.0001 and γ = 0.9999 ± 0.0002, the gravitational quadrupole moment of the Sun is J 2 = (1.9 ± 0.3) × 10−7, and the variation of the gravitational constant is Ġ/G = (−2 ± 5) × 10−14 yr−1. The results obtained show a remarkable correspondence of the planetary motions and the propagation of light to General Relativity and narrow significantly the range of possible values for alternative theories of gravitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Afanasieva, M. D. Kislik, Yu. F. Kolyuka, and V. F. Tikhonov, Astron. Zh. 67, 1326 (1990) [Sov. Astron. 34, 670 (1990)].

    ADS  Google Scholar 

  2. J. D. Anderson, J. K. Campbell, R. F. Jurgens, et al., 6th Marcel Grossman Meeting on General Relativity, Ed. by H. Sato and T. Nakamura (World Sci., 1992), p. 353.

  3. J. D. Anderson, P. B. Esposito, W. Martin, et al., Astrophys. J. 200, 221 (1975).

    Article  ADS  Google Scholar 

  4. J. D. Anderson, M. S. Keesey, E. L. Lau, et al., Acta Astronautica 5, 43 (1978).

    Google Scholar 

  5. J. D. Anderson, E. L. Lau, S. Turyshev, et al., Bull. Am. Astron. Soc. 34, 660 (2002).

    ADS  Google Scholar 

  6. B. Bertotti, L. Iess, and P. Tortora, Nature 425, 374 (2003).

    Article  ADS  Google Scholar 

  7. T. M. Brown, J. Christensen-Dalsgaad, W. A. Dziembowski, et al., Astrophys. J. 343, 526 (1989).

    Article  ADS  Google Scholar 

  8. V. A. Brumberg, Relativistic Celestial Mechanics (Nauka, Moscow, 1972).

    Google Scholar 

  9. V. A. Brumberg and E. Groten, Astron. Astrophys. 367, 1070 (2001).

    Article  ADS  Google Scholar 

  10. V. M. Canuto, S.-H. Hsieh, and J. R. Owen, Mon. Not. R. Astron. Soc. 188, 829 (1979).

    ADS  Google Scholar 

  11. T. Damour and J. H. Taylor, Astrophys. J. 366, 501 (1991).

    Article  ADS  Google Scholar 

  12. T. L. Duvall, W. A. Dziembowski, P. Goode, et al., Nature 310, 22 (1984).

    ADS  Google Scholar 

  13. T. M. Eubanks, D. N. Matsakis, J. O. Martin, et al., American Physical Society APS/AAPT Joint Meeting (1997).

  14. M. Froeschle, F. Mignard, and F. Arenou, Hipparcos—Venice 97, ESA-402 (Venice, 1997), p. 49.

  15. S. Godier and J. P. Rozelot, Astron. Astrophys. 355, 365 (2000).

    ADS  Google Scholar 

  16. R. W. Hellings, P. J. Adams, J. D. Anderson, et al., Phys. Rev. Lett. 51, 1609 (1983).

    Article  ADS  Google Scholar 

  17. R. W. Hellings, P. J. Adams, J. D. Anderson, et al., Int. J. Theor. Phys. 28, 1035 (1989).

    Article  Google Scholar 

  18. H. A. Hill, R. J. Bos, and P. R. Goode, Phys. Rev. Lett. 49, 1794 (1982).

    ADS  Google Scholar 

  19. G. A. Krasinsky, Commun. of IAA RAS 148, 1 (2002).

    Google Scholar 

  20. G. A. Krasinsky, E. V. Pitjeva, M. V. Vasilyev, and E. I. Yagudina, Commun. of IAA RAS 139, 1 (2001).

    Google Scholar 

  21. G. A. Krasinsky, E. V. Pitjeva, M. V. Vasilyev, and E. I. Yagudina, Icarus 158, 98 (2002).

    Article  ADS  Google Scholar 

  22. D. E. Lebach, B. E. Corey, I. I. Shapiro, et al., Phys. Rev. Lett. 75, 1439 (1995).

    Article  ADS  Google Scholar 

  23. X. X. Newhall, E. M. Standish, Jr., and J. G. Williams, Astron. Astrophys. 125, 150 (1983).

    ADS  Google Scholar 

  24. L. Paterno, S. Sofia, and M. P. Di Mauro, Astron. Astrophys. 314, 940 (1996).

    ADS  Google Scholar 

  25. F. P. Pijpers, Mon. Not. R. Astron. Soc. 297, L76 (1998).

    Article  ADS  Google Scholar 

  26. S. Pireaux and J.-P. Rozelot, Astrophys. Space Sci. 284, 1159 (2003).

    Article  ADS  Google Scholar 

  27. E. V. Pitjeva, Byull. Inst. T. A., Ross. Akad. Nauk 15, 538 (1986).

    ADS  Google Scholar 

  28. E. V. Pitjeva, Celest. Mech. 55, 333 (1993).

    ADS  Google Scholar 

  29. E. V. Pitjeva, Third International Workshop on Position Astronomy and Celestial Mechanics, Ed. by G. A. Lopez, E. I. Yagudina, U. M. Martinez, and B. A. Condero (Observ. Astron. Univ. Valencia, 1996), p. 583.

  30. E. V. Pitjeva, Tr. Inst. P. A., Ross. Akad. Nauk 4, 22 (1999).

    Google Scholar 

  31. E. V. Pitjeva, Tr. Inst. P. A., Ross. Akad. Nauk 5, 58 (2000).

    Google Scholar 

  32. E. V. Pitjeva, Celest. Mech. 80, 249 (2001).

    Article  ADS  Google Scholar 

  33. E. V. Pitjeva, Tr. Inst. P. A., Ross. Akad. Nauk 10, 112 (2004).

    Google Scholar 

  34. E. V. Pitjeva, Transit of Venus: New Views of the Solar System and Galaxy, IAU Coll. 196, Ed. by D. W. Kurtz (Cambridge University Press, 2005).

  35. R. D. Reasenberg and I. I. Shapiro, On the Measurement of Cosmological Variations of the Gravitational Constant, Ed. by L. Halpern (Florida Univ. Press, USA, 1978), p. 71.

    Google Scholar 

  36. R. D. Reasenberg, I. I. Shapiro, P. E. MacNeil, et al., Astrophys. J. 234, L219 (1979).

    Article  ADS  Google Scholar 

  37. D. S. Robertson, W. E. Carter, and W. H. Dillinger, Nature 349, 768 (1991).

    Article  ADS  Google Scholar 

  38. I. I. Shapiro, G. H. Pettengill, M. E. Ash, et al., Phys. Rev. Lett. 28, 1594 (1972).

    Article  ADS  Google Scholar 

  39. I. I. Shapiro, G. H. Pettengill, M. E. Ash, et al., Phys. Rev. Lett. 20, 1265 (1968).

    ADS  Google Scholar 

  40. E. M. Standish, Bull. Am. Astron. Soc. 32, 870 (2000).

    ADS  Google Scholar 

  41. E. M. Standish, Astron. Astrophys. 233, 252 (1990).

    ADS  Google Scholar 

  42. E. M. Standish, Astron. Astrophys. 336, 381 (1998).

    ADS  Google Scholar 

  43. E. M. Standish and A. Fienga, Astron. Astrophys. 384, 322 (2002).

    Article  ADS  Google Scholar 

  44. J. G. Williams, D. H. Boggs, J. O. Dickey, and W. M. Folkner, Ninth Marcel Grossman Meeting, Ed. by V. G. Gurzadyan, R. T. Jantzen, and R. Ruffini (World Sci., 2002), p. 1797.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 31, No. 5, 2005, pp. 378–387.

Original Russian Text Copyright © 2005 by Pitjeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitjeva, E.V. Relativistic effects and solar oblateness from radar observations of planets and spacecraft. Astron. Lett. 31, 340–349 (2005). https://doi.org/10.1134/1.1922533

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1922533

Key words

Navigation