Skip to main content
Log in

Dibaryon model for nuclear force and the properties of the 3N system

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The dibaryon model for N N interaction, which implies the formation of an intermediate six-quark bag dressed by a σ field, is applied to the 3N system, where it results in a new three-body force of scalar nature between the six-quark bag and a third nucleon. A new multicomponent formalism is developed to describe three-body systems with nonstatic pairwise interactions and nonnucleonic degrees of freedom. Precise variational calculations of 3N bound states are carried out in the dressed-bag model including the new scalar three-body force. The unified coupling constants and form factors for 2N-and 3N-force operators are used in the present approach, in sharp contrast to conventional meson-exchange models. It is shown that this three-body force gives at least half the 3N total binding energy, while the weight of nonnucleonic components in the 3H and 3He wave functions can exceed 10%. The new force model provides a very good description of 3N bound states with a reasonable magnitude of the σN N coupling constant. A new Coulomb 3N force between the third nucleon and dibaryon is found to be very important for a correct description of the Coulomb energy and rms charge radius in 3He. In view of the new results for Coulomb displacement energy obtained here for A = 3 nuclei, an explanation for the long-term Nolen-Schiffer paradox in nuclear physics is suggested. The role of the charge-symmetry-breaking effects in the nuclear force is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the XVIII European Conference on Few-Body Problems in Physics, Bled, Slovenia, 2002; Few-Body Syst. Suppl. 14 (2003).

  2. W. Tornow, H. Witala, and A. Kievsky, Phys. Rev. C 57, 555 (1998); D. Hueber, Few-Body Syst. Suppl. 10, 305 (1999); L. D. Knutson, Nucl. Phys. A 631, 9c (1998).

    Article  ADS  Google Scholar 

  3. Y. Koike and S. Ishikawa, Nucl. Phys. A 631, 683c (1998).

    ADS  Google Scholar 

  4. H. O. Meyer, Talk Presented at Symposium on Current Topics in the Field of Light Nuclei, Cracow, Poland, 1999, p. 858 (unpublished).

  5. D. L. Groep et al., Phys. Rev. C 63, 014005 (2001).

  6. D. P. Watts et al., Phys. Rev. C 62, 014616 (2000).

  7. L. Weinstein, Few-Body Syst. Suppl. 14, 316 (2003).

    Google Scholar 

  8. V. I. Kukulin, I. T. Obukhovsky, V. N. Pomerantsev, and A. Faessler, Yad. Fiz. 64, 1748 (2001) [Phys. At. Nucl. 64, 1667 (2001)]; J. Phys. G 27, 1851 (2001).

    Google Scholar 

  9. B. F. Gibson, Lect. Notes Phys. 260, 511 (1986).

    Google Scholar 

  10. B. F. Gibson et al., Few-Body Syst. 3, 143 (1988).

    Article  Google Scholar 

  11. P. Sauer, Talk Presented at Symposium on Current Topics in the Field of Light Nuclei, Cracow, Poland, 1999, p. 503 (unpublished).

  12. N. Kaiser, R. Brockmann, and W. Weise, Nucl. Phys. A 625, 758 (1997); N. Kaiser, S. Gerstendörfer, and W. Weise, Nucl. Phys. A 637, 395 (1998).

    ADS  Google Scholar 

  13. E. Oset et al., Prog. Theor. Phys. 103, 351 (2000).

    Article  ADS  Google Scholar 

  14. M. M. Kaskulov and H. Clement, Phys. Rev. C 70, 014002 (2004); 70, 057001 (2004).

  15. A. M. Kusainov, V. G. Neudatchin, and I. T. Obukhovsky, Phys. Rev. C 44, 2343 (1991).

    Article  ADS  Google Scholar 

  16. F. Myhrer and J. Wroldsen, Rev. Mod. Phys. 60, 629 (1988).

    Article  ADS  Google Scholar 

  17. A. Faessler and F. Fernandez, Phys. Lett. B 124B, 145 (1983); A. Faessler, F. Fernandez, G. Lübeck, and K. Shimizu, Nucl. Phys. A 402, 555 (1983).

    ADS  Google Scholar 

  18. V. I. Kukulin and V. N. Pomerantsev, Prog. Theor. Phys. 88, 159 (1992).

    Article  ADS  Google Scholar 

  19. Y. Yamauchi and M. Wakamatsu, Nucl. Phys. A 457, 621 (1986).

    ADS  Google Scholar 

  20. M. Oka and K. Yazaki, Nucl. Phys. A 402, 477 (1983); E. M. Henley, L. S. Kisslinger, and G. A. Miller, Phys. Rev. C 28, 1277 (1983); K. Bräuer, E. M. Henley, and G. A. Miller, Phys. Rev. C 34, 1779 (1986).

    ADS  Google Scholar 

  21. T. Fujita et al., Prog. Theor. Phys. 100, 931 (1998).

    Article  ADS  Google Scholar 

  22. Fl. Stancu, S. Pepin, and L. Ya. Glozman, Phys. Rev. C 56, 2779 (1997).

    Article  ADS  Google Scholar 

  23. D. Bartz and Fl. Stancu, Phys. Rev. C 63, 034001 (2001).

  24. V. I. Kukulin, I. T. Obukhovsky, V. N. Pomerantsev, and A. Faessler, Int. J. Mod. Phys. E 11, 1 (2002).

    ADS  Google Scholar 

  25. V. I. Kukulin, Few-Body Syst. Suppl. 14, 71 (2003).

    Google Scholar 

  26. T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994); T. Hatsuda, T. Kunihiro, and H. Shimizu, Phys. Rev. Lett. 82, 2840 (1999).

    Article  ADS  Google Scholar 

  27. Yu. D. Bayukov et al., Yad. Fiz. 34, 167 (1981) [Sov. J. Nucl. Phys. 34, 95 (1981)]; Yad. Fiz. 34, 785 (1981) [Sov. J. Nucl. Phys. 34, 437 (1981)]; A. V. Vlasov et al., Yad. Fiz. 36, 915 (1982) [Sov. J. Nucl. Phys. 36, 536 (1982)].

    Google Scholar 

  28. T. Risser and M. D. Shuster, Phys. Lett. B 43B, 68 (1973); C. A. Mosbacher and F. Osterfeld, Phys. Rev. C 56, 2014 (1997); A. Gärdestig, G. Fäldt, and C. Wilkin, Phys. Lett. B 421, 41 (1998).

    ADS  Google Scholar 

  29. Yu. A. Kuperin, K. A. Makarov, S. P. Merkuriev, et al., Teor. Mat. Fiz. 75, 431 (1987); 76, 834 (1988).

    Google Scholar 

  30. Yu. A. Kuperin, K. A. Makarov, S. P. Merkuriev, et al., J. Math. Phys. 31, 1681 (1990).

    ADS  MathSciNet  Google Scholar 

  31. Yu. A. Kuperin, K. A. Makarov, S. P. Merkuriev, et al., Quantum Scattering Theory on Energy-Dependent Potentials, in Properties of Few-Body and Quark-Hadron Systems (Vilnius, 1986), Vol. 2, p. 28.

    Google Scholar 

  32. V. I. Kukulin, V. N. Pomerantsev, M. Kaskulov, and A. Faessler, J. Phys. G 30, 287 (2004); V. I. Kukulin, V. N. Pomerantsev, and A. Faessler, J. Phys. G 30, 309 (2004).

    ADS  Google Scholar 

  33. Yu. A. Kuperin, K. A. Makarov, S. P. Merkuriev, and A. K. Motovilov, Yad. Fiz. 48, 358 (1988) [Sov. J. Nucl. Phys. 48, 224 (1988)].

    Google Scholar 

  34. Yu. A. Simonov, Yad. Fiz. 36, 722 (1982) [Sov. J. Nucl. Phys. 36, 422 (1982)]; 38, 1542 (1983) [38, 939 (1983)].

    Google Scholar 

  35. Yu. S. Kalashnikova and I. M. Narodetskii, Yad. Fiz. 46, 1389 (1987) [Sov. J. Nucl. Phys. 46, 820 (1987)]; Few-Body Syst. 4, 115 (1988).

    Google Scholar 

  36. A. K. Motovilov, Teor. Mat. Fiz. 104, 281 (1995).

    MATH  MathSciNet  Google Scholar 

  37. E. W. Schmid, Helv. Phys. Acta 60, 394 (1987).

    Google Scholar 

  38. V. I. Kukulin and M. A. Shikhalev, Yad. Fiz. 67, 1558 (2004) [Phys. At. Nucl. 67, 1536 (2004)].

    Google Scholar 

  39. V. I. Kukulin, V. M. Krasnopolsky, and V. N. Pomerantsev, in Proceedings of the 3rd LIYaF Symposium “Nucleon-Nucleon and Hadron-Nuclear Interactions at Intermediate Energies” (LIYaF, Leningrad, 1986), p. 103.

    Google Scholar 

  40. J. Horaček, J. Bok, V. M. Krasnopolskij, and V. I. Kukulin, Phys. Lett. B 172, 1 (1986).

    ADS  Google Scholar 

  41. G. H. Berthold and H. Zankel, Phys. Rev. C 30, 14 (1984).

    Article  ADS  Google Scholar 

  42. M. M. Mustafa, Phys. Rev. C 47, 473 (1993).

    Article  ADS  Google Scholar 

  43. N. L. Rodning and L. D. Knutson, Phys. Rev. C 41, 898 (1990).

    Article  ADS  Google Scholar 

  44. C. Fasano and T.-S. H. Lee, Phys. Rev. C 36, 1906 (1987); Phys. Lett. B 217, 9 (1989).

    Article  ADS  Google Scholar 

  45. E. M. Tursunov, Kh. D. Razikov, V. I. Kukulin, et al., Yad. Fiz. 57, 2155 (1994) [Phys. At. Nucl. 57, 2075 (1994)].

    Google Scholar 

  46. V. T. Voronchev et al., J. Phys. G 8, 667 (1982); V. M. Krasnopol’ski et al., Phys. Lett. B 121B, 96 (1983); V. I. Kukulin et al., Nucl. Phys. A 453, 365 (1986).

    ADS  Google Scholar 

  47. V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G 3, 795 (1977).

    Article  ADS  Google Scholar 

  48. H. Dijk and B. L. G. Bakker, Nucl. Phys. A 494, 438 (1989); 531, 555 (1991).

    ADS  Google Scholar 

  49. A. Nogga et al., Phys. Rev. C 67, 034004 (2003).

  50. S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Phys. Rev. C 64, 014001 (2001).

    Google Scholar 

  51. J. L. Friar, B. F. Gibson, G. L. Payne, and C. R. Chen, Phys. Rev. C 34, 1463 (1986).

    ADS  Google Scholar 

  52. B. Doyle, B. Goulard, and G. Cory, Phys. Rev. C 45, 1444 (1992).

    Article  ADS  Google Scholar 

  53. S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).

    Article  ADS  Google Scholar 

  54. G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 22, 832 (1980); J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 35, 1502 (1987).

    ADS  MathSciNet  Google Scholar 

  55. A. Laverne and C. Gignoux, Nucl. Phys. A 203, 597 (1973).

    ADS  Google Scholar 

  56. J. A. Nolen and J. P. Schiffer, Annu. Rev. Nucl. Part. Sci. 19, 471 (1969).

    ADS  Google Scholar 

  57. V. I. Kukulin, V. N. Pomerantsev, A. Faessler, et al., Phys. Rev. C 57, 535 (1998).

    ADS  Google Scholar 

  58. C. R. Howell et al., Phys. Lett. B 444, 252 (1998).

    ADS  Google Scholar 

  59. I. Šlaus, Y. Akaishi, and H. Tanaka, Phys. Rep. 173, 257 (1989).

    ADS  Google Scholar 

  60. V. Huhn et al., Phys. Rev. C 63, 014003 (2001); Phys. Rev. Lett. 85, 1190 (2000).

  61. P. U. Sauer and H. Walliser, J. Phys. G 3, 1513 (1977).

    ADS  Google Scholar 

  62. M. Rahman and G. A. Miller, Phys. Rev. C 27, 917 (1983).

    Article  ADS  Google Scholar 

  63. S. Albeverio et al., Phys. Rev. C 29, 680 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Google Scholar 

  65. B. L. G. Bakker and I. M. Narodetsky, Adv. Nucl. Phys. 21, 1 (1994).

    Google Scholar 

  66. H. J. Weber, Ann. Phys. (N.Y.) 207, 417 (1991).

    Article  Google Scholar 

  67. T. Skorodko et al., Talk Presented at 8th International Workshop “MESON 2004”, Cracow, Poland, 2004 (unpublished).

  68. J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974); B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986); B. D. Serot, Rep. Prog. Phys. 55, 1855 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 68, No. 9, 2005, pp. 1511–1544.

Original English Text Copyright © 2005 by Pomerantsev, Kukulin, Voronchev, Faessler.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomerantsev, V.N., Kukulin, V.I., Voronchev, V.T. et al. Dibaryon model for nuclear force and the properties of the 3N system. Phys. Atom. Nuclei 68, 1453–1486 (2005). https://doi.org/10.1134/1.2053331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2053331

Keywords

Navigation