Skip to main content
Log in

Spatial structure of emission from an electrode microwave discharge in hydrogen

  • Low-Temperature Plasmas
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Lebedev, J. Phys. IV (Paris) 8, 369 (1998).

    Google Scholar 

  2. G. M. Batanov, N. K. Berezhetskaya, E. F. Bol’shakov, et al., Plasma Sources Sci. Technol. 2, 164 (1993).

    Article  ADS  Google Scholar 

  3. V. G. Brovkin, Yu. F. Kolesnichenko, and D. V. Khmara, in Ball Lightning under Laboratory Conditions (Khimiya, Moscow, 1994), p. 119.

    Google Scholar 

  4. V. G. Brovkin, Yu. F. Kolesnichenko, and D. Khmara, Prikl. Fiz., No. 4, 5 (1994).

  5. L. Bardos, H. Barankova, Yu. A. Lebedev, et al., Diamond Relat. Mater. 6, 224 (1997).

    Google Scholar 

  6. L. Bardosh and Yu. A. Lebedev, Fiz. Plazmy 24, 956 (1998) [Plasma Phys. Rep. 24, 891 (1998)].

    Google Scholar 

  7. L. Bardosh and Yu. A. Lebedev, Zh. Tekh. Fiz. 68 (12), 29 (1998) [Tech. Phys. 43, 1428 (1998)].

    Google Scholar 

  8. O. A. Nerushev, S. A. Novopashin, V. V. Radchenko, et al., Preprint No. 285-97 (Inst. of Thermophysics, Siberian Division, Russian Academy of Sciences, 1997).

  9. S. T. Ivanov, R. W. Thomae, H. Klein, et al., Bulgar. J. Phys. 25, 49 (1998).

    Google Scholar 

  10. V. B. Gil’denburg and G. A. Markov, Pis’ma Zh. Tekh. Fiz. 8 (20), 1245 (1982) [Sov. Tech. Phys. Lett. 8, 535 (1982)].

    Google Scholar 

  11. Yu. A. Lebedev and I. L. Epstein, J. Moscow Phys. Soc. 5, 103 (1995).

    Google Scholar 

  12. L. S. Polak, A. A. Ovsyannikov, D. I. Slovetskii, et al., Theoretical and Applied Plasmochemistry (Nauka, Moscow, 1975).

    Google Scholar 

  13. V. B. Gil’denburg, V. L. Gol’tsman, and V. E. Semenov, Radiofizika 17 (11), 1718 (1974).

    Google Scholar 

  14. V. B. Gil’denburg and V. E. Semenov, Fiz. Plazmy 6, 445 (1980) [Sov. J. Plasma Phys. 6, 244 (1980)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 26, No. 3, 2000, pp. 293–298.

Original Russian Text Copyright © 2000 by Lebedev, Mokeev, Tatarinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, Y.A., Mokeev, M.V. & Tatarinov, A.V. Spatial structure of emission from an electrode microwave discharge in hydrogen. Plasma Phys. Rep. 26, 272–277 (2000). https://doi.org/10.1134/1.952847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.952847

Keywords

Navigation