Skip to main content
Log in

Convergence Space Experiment: Scientific Objectives, Onboard Equipment, and Methods of Solving Inverse Problems

  • SPACE VEHICLES AND SYSTEMS OF PROGRAMS OF THE INSTITUTE OF EARTH CRUST
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The purpose of this research is to present a detailed description of the proposed Convergence space mission on the Russian segment of the International Space Station for the wider scientific community. The key features of the mission are (1) the necessity of creating a new type of multifrequency radio-thermal airborne complexes with a specialized set of operating frequencies and with the formation of algorithms and software for the three-dimensional recovery of the water-vapor field in the lower troposphere and for estimating the horizontal advection and convective latent heat fluxes at different altitudes and with different forms of boundaries of the investigated regions. (2) An important part of the mission is the global monitoring of optical transient activity, including lightning in cloud tropospheric systems and electric discharges in the upper atmosphere, which are accompanied by a variety of short-term optical glows, commonly called transient luminous events. A significant contribution to the elucidation of the physics and the development of models of high-altitude electric discharges is the synchronous operation of the lightning detector and gamma detector to search for and study gamma-ray bursts of terrestrial origin, including those in previously unexplored latitudes, up to ±51°. It seems that the proposed instrumental configuration and integrity of the mission, which includes the synchronous operation of devices of different ranges of electromagnetic radiation (both the microwave range and optical and gamma range) will contribute significantly to the elucidation of the physics of processes of interaction of catastrophic atmospheric phenomena of the hydrodynamic type, i.e., tropical cyclones, with the electrical activity of tropospheric cloud systems (the field of lightning discharges) and activity of high-altitude electric discharges, which, in turn, can serve as a serious experimental basis for the formation of physical ideas about the genesis of gamma-ray outbreaks of terrestrial origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. 
Fig. 3.
Fig. 4. 
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Albrecht, R.I., Goodman, S.J., Petersen, W.A., Buechler, D.E., Bruning, E.C., Blakeslee, R.J., and Christian, H.J., The 13 years of TRMM lightning imaging sensor: From individual flash characteristics to decadal tendencies, 14th International Conference on Atmospheric Electricity; Rio de Janeiro, Brazil, 2011.

  2. Albrecht, R.I., Goodman, S., Buechler, D., and Blakeslee, R., Christian H, Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc., 2016, vol. 97, pp. 2051–2068.

    Article  Google Scholar 

  3. Archer, C.L. and Caldeira, K., Historical trends in the jet streams, Geophys. Res. Lett., 2008, vol. 35, no. 8, L08803. https://doi.org/10.1029/2008GL033614

    Article  Google Scholar 

  4. Beirle, S., Koshak, W., Blakeslee, R., and Wagner, T., Global patterns of lightning properties derived by OTD and LIS, Nat. Hazards Earth Syst. Sci., 2014, vol. 14, pp. 2715–2726.

    Article  Google Scholar 

  5. Bogomolov, V.V., Panasyuk, M.L., Svertilov, S.I., Bogomolov, A.V., Garipov, G.K., Iyudin, A.F., Klimov, P.A., Klimov, S.I., Mishieva, T.M., Minaev, P.Yu., Morozenko, V.S., Morozov, O.V., Pozanenko, A.S., Prokhorov, A.V., and Rotkel, H., Observation of Terrestrial Gamma-Ray Flashes in the RELEC Space Experiment on the Vernov Satellite, Cosmic Res., 2017, vol. 55, no. 3, pp. 159–168.

    Article  Google Scholar 

  6. Boldyrev, V.V., Grobets, N.N., Il’gasov, P.A., et al., Satellite microwave imager/sounder MTVZA-GYa), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2008, vol. 5, no. 1, pp. 243–248.

    Google Scholar 

  7. Bommarito, J.J., DMSP special sensor microwave imager sounder (SSMIS), Proc. SPIE, 1993, vol. 1935, pp. 230–238.

    Article  Google Scholar 

  8. Briggs, M., Xiong, S., and Connaughton, V., Terrestrial gamma-ray flashes in the Fermi era: Improved observations and analysis methods, J. Geophys. Res., 2013, vol. 118, pp. 3805–3830.

    Article  Google Scholar 

  9. Briggs, M., Connaughton, V., and Stanbro, M., The first Fermi gamma-ray burst monitor (GBM) terrestrial gamma-ray flash (TGF) catalog, EGU General Assembly, 2015a, id 9961.

  10. Briggs, M.S., Wersinger, J.M., Fogle, M. Jr., Biaz, S., and Jenke, P., TRYAD: A pair of cubesats to measure terrestrial gamma-ray flash beams, Am. Geophys. Union Fall Meeting, 2015b, id AE33A-0481.

  11. Chernenko, A.M., On the relationship of terrestrial gamma-ray flashes (TGF) with the distribution of tropospheric admixtures, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2018 (in press).

  12. Christian, H.J., Blakeslee, R.J., Boccippio, D.J., Boeck, W.L., Buechler, D.E., Driscoll, K.T., Goodman, S.J., Hall,  J.M., Koshak, W.J., Mach, D.M., and Stewart, M.F., Global frequency and distribution of lightning as observed from space by the optical transient detector, J. Geophys. Res., 2003, vol. 108, no. D1, pp. ACL4-1–ACL4-15.

  13. Connaughton, V., Briggs, M.S., and Xiong, S., Radio signals from electron beams in terrestrial gamma ray flashes, J. Geophys. Res., 2013, vol. 118, no. 5, pp. 2313–2320.

    Article  Google Scholar 

  14. Emanuel, K., How hurricanes respond to climate change, Lecture in the Cornell University, 2017. https://www. youtube.com/watch?v=8cmORDsAS0s.

  15. Ermakov, D.M., Using information on the tropospheric dynamics at radiothermal remote sensing of the vertical profile of atmospheric humidity, Zh. Radioelektron., 2017a, no. 12. http://jre.cplire.ru/jre/ decl7/15/text.pdf.

  16. Ermakov, D.M., Analysis of the 3D structure of the air humidity field as a problem of technical vision, Tezisy dokladov 15-oi vserossiiskoi otkrytoi konferentsii Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa (Abstracts of Presentations of the 15th All-Russian Open Conference Current Problems of Remote Sensing of the Earth from Space), 2017b, p. 458.

  17. Ermakov, D.M. Global circulation of latent heat in the Earth’s atmosphere based on satellite radiothermal vision, Issled. Zemli Kosmosa, 2018 (in press).

  18. Ermakov, D.M., Raev, M.D., Suslov, A.I., and Sharkov, E.A., Electronic long-term database of global radiothermal field of the Earth in the context of multiscale investigation of the ocean-atmosphere system, Issled. Zemli Kosmosa, 2007, no. 1, pp. 7–13.

  19. Ermakov, D.M., Chernushich, A.P., Sharkov, E.A., and Pokrovskaya, I.V., Searching for an energy source of the intensification of tropical cyclone Katrina using microwave satellite sensing data, Issled. Zemli Kosmosa, 2012a, no. 4, pp. 47–56.

  20. Ermakov, D.M., Chernushich, A.P., and Sharkov, E.A., Detailing the developmental phases of TC Katrina on interpolated global fields of water vapor, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012b, vol. 9, no. 2, pp. 207–213.

    Google Scholar 

  21. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Possibility of quantitative description of mesoscale processes in the atmosphere based on the animated analysis, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 4, pp. 153–162.

    Google Scholar 

  22. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Satellite radiothermovision of atmospheric mesoscale processes: Case study of tropical cyclones, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2015, vol. 15, no. 7, pp. 179–186.

    Article  Google Scholar 

  23. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., A multisensory algorithm of satellite radiothermovision, Izv., Atmos. Ocean. Phys., 2016a, vol. 52, no. 9, pp. 1172–1180.

  24. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Satellite radiothermal vision on synoptic and climatically significant scales, Issled. Zemli Kosmosa, 2016b, no. 5, pp. 3–9.

  25. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Circulation of latent heat in the Earth’s atmosphere: An analysis of 15-year radiothermal satellite measurements, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2017c, vol. 14, no. 6, pp. 9–27.

    Article  Google Scholar 

  26. Fishman, G.J., Bhat, P.N., Mallozzi, R., Horack, J.M., Koshut, T., Kouveliotou, C., Pendleton, G.N., Meegan, C.A., Wilson, R.B., Paciesas, W.S., Goodman, S.J., and Christian, H.J., Discovery of intense gamma-ray flashes of atmospheric origin, Science, 1994, vol. 264, no. 5163, pp. 1313–1316.

    Article  Google Scholar 

  27. Fu, Q., Johanson, C.M., Wallace, J.M., and Reichler, T., Enhanced midlatitude tropospheric warming in satellite measurements, Science, 2006, vol. 312, no. 5777, p. 1179.

    Article  Google Scholar 

  28. Gangwar, R.K. and Gohil, B.S., Retrieval of layer averaged relative humidity profiles from MHS observations over tropical region, Int. J. Atmos. Sci., 2014, vol. 2014, id 645970.

  29. Gjesteland, T., Østgaard, N., and Collier, A.B., Confining the angular distribution of terrestrial gamma ray flash emission, J. Geophys. Res., 2011, vol. 116, A11313.

    Article  Google Scholar 

  30. Gohil, B.S. and Mathur, A.K., Atmospheric humidity profile retrieval algorithms for Megha-Tropiques SAPHIR: A simulation study and analysis of AMSU-D data, Remote Sensing of the Atmosphere and Clouds:Proc. SPIE, 2006, vol. 6408, pp. 640803-1–640803-9.

    Article  Google Scholar 

  31. Grefenstette, B.W., Smith, D.M., Hazelton, B.J., and Lopez, L.I., First RHESSI terrestrial gamma ray flash catalog, J. Geophys. Res., 2009, vol. 114, no. A2, id A02314.

  32. Grove, J.E. and Chekhtman, A., Fermi LAT collaboration, Am. Astron. Soc. HEAD Meeting no. 13, 2013, 127.27.

  33. Gurevich, A., Zelenyi, L., and Klimov, S., Scientific tasks of the Chibis-M mission, Missiya “Chibis-M”: sb. tr. vyezdnoi sem. (The Chibis-M mission: Proceedings of Field Seminar), Nazirov, R.R., Ed., Moscow: IKI RAN, 2009, pp. 7–25.

  34. Gurevich, A.V., Milikh, G.M., and Roussel-Dupre, R., Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A, 1992, vol. 165, pp. 463–468.

    Article  Google Scholar 

  35. Gurevich, A.V., et al., Upper limit of gamma ray flux in intra-cloud discharges from observations on-board Chibis-M microsatellite, J. Atmos. Sol.-Terr. Phys., 2018 [submitted].

  36. Holzworth, R.H., World Wide Lightning Location Network, 2018. http://wwlln.net.

  37. Hu, Y. and Fu, Q., Observed poleward expansion of the Hadley circulation since 1979, Atmos. Chem. Phys., 2007, vol. 7, no. 19, pp. 5229–5236.

    Article  Google Scholar 

  38. Hudson, R.D., Andrade, M.F., Follette, M.B., and Frolov, A.D., The total ozone field separated into meteorological regimes, Part II: Northern Hemisphere mid-latitude total ozone trends, Atmos. Chem. Phys., 2006, vol. 6, no. 12, pp. 5183–5191.

    Article  Google Scholar 

  39. Huntrieser, H., Schlager, H., Feigl, C., and Holler, H., Transport and production of NOx in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes, J. Geophys. Res., 1998, vol. 103, no. D21, pp. 28247–28264.

    Article  Google Scholar 

  40. Jaeglé, L., Steinberger, L., Martin, R.V., and Chance, K., Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss., 2005, vol. 130, pp. 407–433.

    Article  Google Scholar 

  41. Jeong, S., Panasyuk, M.I., Reglero, V., Connell, P., Kim, M.B., Lee, J., Rodrigo, J.M., Ripa, J., Eyles, C., Lim, H., Gaikov, G., Jeong, H., Leonov, V., Chen, P., Castro-Tirado, A.J., Nam, J.W., Svertilov, S., Yashin, I., Garipov, G., Huang, M.H.A., Huang, J.J., Kim, J.E., Liu, T.C., Petrov, V., Bogomolov, V., Budtz-Jergensen, C., Brandt, S., and Park, I., UBAT of UFFO/Lomonosov: The X-ray space telescope to observe early photons from gamma-ray bursts, Space Sci. Rev., 2018, vol. 218, p. 16.

    Article  Google Scholar 

  42. Kang, S.M. and Seager, R., Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere?, Clim. Dyn., 2015, vol. 44, nos. 5–6, pp. 1457–1472.

    Article  Google Scholar 

  43. Koshak, W.J., A mixed exponential distribution model for retrieving ground flash fraction from satellite lightning imager data, J. Atmos. Oceanic Technol., 2011, vol. 28, pp. 475–492.

    Article  Google Scholar 

  44. Koshak, W.J., Lightning NOx estimates from space-based lightning imagers, 16th Annual Community Modeling and Analysis System (CMAS) Conference, Chapel Hill, NC, 2017.

  45. Koshak, W.J., Cummins, K.L., Buechler, D.E., Vant-Hull, B., Blakeslee, R.J., Williams, E.R., and Peterson, H.S., Variability of CONUS lightning in 2003-12 and associated impacts, J. Appl. Meteorol. Climatol., 2015, vol. 54, pp. 15–41.

    Article  Google Scholar 

  46. Kotov, Yu., Arkhangelskaja, I., and Arkhangelsky, A., The study of cosmic gamma-emission nonstationary fluxes characteristics by the AVS-F apparatus data, The Coronas-F Space Mission: Key Results for Solar Terrestrial Physics, Kuznetsov, V.D., Ed., Springer, 2014, pp. 175–256.

    Google Scholar 

  47. Kuznetsov, V.D., Ruzhin, Yu.Ya., and Sinel’nikov, V.M., Geophysical experiments on the ISS, Kosm. Nauka Tekhnol., 2011, vol. 17, no. 1, pp. 12–16.

    Article  Google Scholar 

  48. Marisaldi, M., Fuschino, F., and Tavani, M., Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30MeV, J. Geophys. Res., 2014, vol. 119, p. 1337.

    Article  Google Scholar 

  49. Mathur, A.K., Gangwar, R.K., Gohil, B.S., Sanjib, K.D., Kumar, P., Munn, V., Shukla, B.S., and Pal, P.K., Humidity profile retrieval from SAPHIR on-board the Megha-Tropiques, Curr. Sci., 2013, vol. 104, no. 12, pp. 1650–1655.

    Google Scholar 

  50. Murray, L.T., Lightning NOx and impacts on air quality, Curr. Pollut. Rep., 2016, vol. 2, pp. 115–133.

    Article  Google Scholar 

  51. Neubert, T., Kuvvetli, I., Budtz-Jørgensen, Østgaard, N., Reglero, V. and Arnold, N., The Atmosphere–Space Interactions Monitor (ASIM) for the International Space Station, ILWS Workshop, Goa, 2006.

  52. Østgaard, N., Gjesteland, T., and Hansen, R.S., The true fluence distribution of terrestrial gamma flashes at satellite altitude, J. Geophys. Res., 2012, vol. 117, A03327.

    Article  Google Scholar 

  53. Østgaard, N., Gjesteland, T., and Carlson, B.E., Simultaneous observations of optical lightning and terrestrial gamma ray flash from space, Geophys. Res. Lett., 2013, vol. 40, pp. 2423–2426.

    Article  Google Scholar 

  54. Palmén, E. and Newton, C.W., Atmospheric Circulation Systems: Their Structural and Physical Interpretation, New York: Acad. Press, 1969.

    Google Scholar 

  55. Pan, Y., Li, L., Jiang, X., Li, G., Zhang, W., Wang, X., and Ingersol, A.P., Earth’s changing global atmospheric energy cycle in response to climate change, Nature Commun., 2017, vol. 8, id 14367. https://doi.org/10.1038/ncomms14367

  56. Pokrovskaya, I.V. and Sharkov, E.A., Tropicheskie tsiklony i tropicheskie vozmushcheniya Mirovogo okeana: khronologiya i evolyutsiya. Vers. 3.1 (1983–2005) (Tropical Cyclones and Tropical Disturbances in the World Ocean: Chronology and Evolution. Version 3.1 (1983–2005)), Moscow: Poligraf-servis, 2006.

  57. Pokrovskaya, I.V. and Sharkov, E.A., Tropicheskie tsiklony i tropicheskie vozmushcheniya Mirovogo okeana: khronologiya i evolyutsiya. Vers. 4.1 (2006–2010) (Tropical Cyclones and Tropical Disturbances in the World Ocean: Chronology and Evolution. Version 4.1 (2006–2010)), Moscow: KDU, 2011.

  58. Pokrovskaya, I.V. and Sharkov, E.A., Tropicheskie tsiklony i tropicheskie vozmushheniya Mirovogo okeana: khronologiya i evolyutsiya. Vers. 5.1 (2011–2015) (Tropical Cyclones and Tropical Disturbances in the World Ocean: Chronology and Evolution. Version 4.1 (2006–2010)), Moscow: KDU, 2016.

  59. Reichler, T., Changes in the atmospheric circulation as indicator of climate change, Climate Change: Observed Impacts on Planet Earth, Letcher, T.M., Ed., Elsevier, 2009, pp. 145–164.

    Google Scholar 

  60. Rosenlof, K.H., Transport changes inferred from HALOE water and methane measurements, J. Meteorol. Soc. Jpn., 2002, vol. 80, no. 4B, pp. 831–848.

    Article  Google Scholar 

  61. Sarria, D., Lebrun, E., Blelly, P.-L., Chipaux, R., Laurent, P., Sauvaud, J.-A., Prech, L., Devoto, P., and Pailot, D., TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams, Geosc-i. Instrum. Methods Data Syst., 2017, vol. 6, no. 2, pp. 239–256. https://doi.org/10.5194/gi-6-239-201

    Article  Google Scholar 

  62. Seidel, D.J. and Randel, W.J., Recent widening of the tropical belt: Evidence from tropopause observations, J. Geophys. Res., 2007, vol. 112, no. D20, D20113. https://doi.org/10.1029/2007JD008861

    Article  Google Scholar 

  63. Seidel, D.J., Fu, Q., Randel, W.J., and Reichler, T., Widening of the tropical belt in a changing climate, Nat. Geosci., 2008, vol. 1, pp. 21–24. https://doi.org/10.1038/ngeo.2007.38

    Article  Google Scholar 

  64. Sharkov, E.A., Remote Sensing of Tropical Regions, New York: John Wiley and Sons/PRAXIS, 1998.

    Google Scholar 

  65. Sharkov, E.A., Global Tropical Cyclogenesis, 1st ed., Berlin: Springer/PRAXIS, 2000.

    Google Scholar 

  66. Sharkov, E.A., Remote studies of atmospheric disasters, Issled. Zemli Kosmosa, 2010, no. 1, pp. 52–68.

  67. Sharkov, E.A., Global Tropical Cyclogenesis, 2nd ed., Berlin: Springer/PRAXIS, 2012.

    Book  Google Scholar 

  68. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Evolution of the tropical cyclone Gonu and its relation to the field of integral water vapor in the equatorial region, Issled. Zemli Kosmosa, 2008, no. 6, pp. 25–30.

  69. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Energy features of plural tropical cyclogenesis from multispectral satellite observations, Izv., Atmos. Ocean. Phys., 2011a, vol. 47, no. 9, pp. 1084–1091.

    Article  Google Scholar 

  70. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Features of water vapor equatorial field during tropical cyclone (TC) evolution by the example of the Francisco TC (2001), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011b, vol. 8, no. 3, pp. 310–316.

    Google Scholar 

  71. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Evolution of the tropical cyclone Hondo in the field of equatorial water vapor using the multispectral approach, Issled. Zemli Kosmosa, 2011c, no. 1, pp. 22–29.

  72. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Critical parameter of the genesis of tropical cyclones in the global field of integral water vapor, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011d, vol. 8, no. 1, pp. 280–286.

    Google Scholar 

  73. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Increased water-vapor content in the atmosphere of tropical latitudes as a necessary condition for the genesis of tropical cyclones, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 9, pp. 900–908.

    Article  Google Scholar 

  74. Smith, D.M., Hazelton, B.J., Grefenstette, B.W., Dwyer, J.R., Holzworth, R.H., and Lay, E.H., Terrestrial gamma ray flashes correlated to storm phase and tropopause height, J. Geophys. Res., 2010, vol. 115, no. 20, A00E49.

    Article  Google Scholar 

  75. Sterlyadkin, V.V. and Sharkov, E.A., Differential radiothermal methods for determining the vertical profile of water vapor in the Earth’s troposphere and stratosphere, Issled. Zemli Kosmosa, 2014, no. 5, pp. 15–28.

  76. Sterlyadkin, V.V., Pashinov, E.V., Kuzmin, A.V., and Sharkov, E.A., Differential radiothermal methods for satellite retrieval of atmospheric humidity profile, Izv., Atmos. Ocean. Phys., 2017a, vol. 53, no. 9, pp. 979–990.

    Article  Google Scholar 

  77. Sterlyadkin, V.V., Pashinov, E.V., Kuz’min, A.V., and Sharkov, E.A., Influence of the underlying surface on the accuracy of satellite differential radiometric measurements of water vapor profile in the lower troposphere, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2017b, vol. 14, no. 5, pp. 268–277.

    Article  Google Scholar 

  78. Tavani, M., Marisaldi, M., and Labanti, C., Terrestrial gamma-ray flashes as powerful particle accelerators, Phys. Res. Lett., 2011, vol. 106, 018501.

    Article  Google Scholar 

  79. Tierney, D., Brtggs, M.S., Fitzpatrtck, G., et al., Fluence distribution of terrestrial gamma ray flashes observed by the Fermi gamma-ray burst monitor, J. Geophys. Res., 2013, vol. 118, pp. 6644–6650.

    Article  Google Scholar 

  80. Veraverbeke, S., Rogers, B.M., Goulden, M.L., Jandt, R.R., Miller, Ch.E., Wiggins, E.B., and Randerson, J.T., Lightning as a major driver of recent large fire years in North American boreal forests, Nature Clim. Change, 2017, vol. 7, pp. 529–534.

    Article  Google Scholar 

  81. Weng, E. and Zou, X., Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications, J. Geophys. Res., 2012, vol. 117, pp. 2156–2202.

    Google Scholar 

  82. Westcott, N.E., Summertime cloud-to-ground lightning activity around major Midwestern urban areas, Appl. Meteorol., 1995, vol. 34, pp. 1633–1642.

    Article  Google Scholar 

  83. Wunsch, C., The total meridional heat flux and its oceanic and atmospheric partition, J. Clim., 2005, vol. 18, no. 21, pp. 4374–4380.

    Article  Google Scholar 

  84. Zhang, W., Zhang, Y., Zheng, D., Wang, E., and Xu, L., Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific, J. Geophys. Res.: Atmos., 2015, vol. 120, pp. 4072–4089.

    Google Scholar 

Download references

Funding

The research into the processes of latent heat transfer in the Earth’s atmosphere according to satellite radio thermal imaging, as well as the development of the technological characteristic of the MIRS space equipment, were performed under the State Assignment no. 01.20.2.00164 for Monitoring; the fundamental problem of creating a new differential method for measuring the concentration profile of water vapor in the troposphere of the Earth using the multichannel space radiometer with the limiting characteristics was supported by the Russian Foundation for Basic Research, no. 18-02-01009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Sharkov, A. V. Kuzmin, V. E. Kvitka or V. O. Prasolov.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharkov, E.A., Kuzmin, A.V., Vedenkin, N.N. et al. Convergence Space Experiment: Scientific Objectives, Onboard Equipment, and Methods of Solving Inverse Problems. Izv. Atmos. Ocean. Phys. 55, 1437–1456 (2019). https://doi.org/10.1134/S0001433819090469

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090469

Keywords:

Navigation