Skip to main content
Log in

Distance-Regular Shilla Graphs with b2 = c2

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigen-value θ1 equal to a3. For a Shilla graph, let us put a = a3 and b = k/a. It is proved in this paper that a Shilla graph with b2 = c2 and noninteger eigenvalues has the following intersection array:

$$\left\{ {\frac{{{b^2}\left( {b - 1} \right)}}{2},\frac{{\left( {b - 1} \right)\left( {{b^2} - b + 2} \right)}}{2},\frac{{b\left( {b - 1} \right)}}{4};1,\frac{{b\left( {b - 1} \right)}}{4},\frac{{b{{\left( {b - 1} \right)}^2}}}{2}} \right\}$$

If Γ is a Q-polynomial Shilla graph with b2 = c2 and b = 2r, then the graph Γ has intersection array

$$\left\{ {2tr\left( {2r + 1} \right),\left( {2r + 1} \right)\left( {2rt + t + 1} \right),r\left( {r + t} \right);1,r\left( {r + t} \right),t\left( {4{r^2} - 1} \right)} \right\}$$

and, for any vertex u in Γ, the subgraph Γ3(u) is an antipodal distance-regular graph with intersection array

$$\left\{ {t\left( {2r + 1} \right),\left( {2r - 1} \right)\left( {t + 1} \right),1;1,t + 1,t\left( {2r + 1} \right)} \right\}$$

The Shilla graphs with b2 = c2 and b = 4 are also classified in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Koolen and J. Park, “Shilla distance-regular graphs,” European J. Combin. 31 (8), 2064–2073 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Makhnev and D. V. Paduchikh, “On the automorphism group of the distance-regular graph with intersection array {24, 21, 3; 1, 3, 18},” Algebra i Logika, 51 (4), 476–495 (2012). [Algebra and Logic 51 (4), 319–332 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Jurišićand J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3,” Des. Codes Cryptogr. 65 (1-2), 29–47 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Vidali, Kode v razdaljno regularnih grafih, Doctoral Dissertation (Univerza v Ljubljani, Ljubljana, 2013).

    Google Scholar 

  5. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs (Springer-Verlag, Berlin, 1989).

    Book  MATH  Google Scholar 

  6. J. H. Koolen, J. Park, and H. Yu, “An inequality involving the second largest and smallest eigenvalue of a distance-regular graph,” Linear Algebra Appl. 434 (12), 2404–2412 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. H. Koolen and J. Park, “Distance-regular graphs with large a1 or c2 at least half the valency,” J. Combin. Theory Ser. A 119 (3), 546–555 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Makhnev.

Additional information

Original Russian Text © A. A. Makhnev, M. S. Nirova, 2018, published in Matematicheskie Zametki, 2018, Vol. 103, No. 5, pp. 730–744.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhnev, A.A., Nirova, M.S. Distance-Regular Shilla Graphs with b2 = c2. Math Notes 103, 780–792 (2018). https://doi.org/10.1134/S0001434618050103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618050103

Keywords

Navigation