Skip to main content
Log in

Spatial variability of the primary production and chlorophyll a concentration in the drake passage in the austral spring

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

The spatial distribution of the primary production (PP) and the chlorophyll a concentration (Chl) were investigated during two research cruises in the Drake Passage area in October–November of 2007 and 2008. The algorithm evaluating the integral PP (PPint) for the water column in this area was developed based on the data on the surface chlorophyll (Chls) and the incident solar irradiance obtained in 2004–2008 in the Atlantic Sector of the Southern Ocean. The results obtained both by the experimental and model approaches suggested that the Polar Front (PF) region of the Drake Passage was characterized by low values of both the PPint (<100 mg C/m2 per day) and Chls (0.08–0.20 mg/m3) in October–November. Low values of the Chls and relatively high phaeophytine a concentrations indicated the winter succession state of the phytoplankton community in the Antarctic Ocean and the southern Polar Frontal Zone (PFZ). The seasonal warming of the surface water layers and the developing pycnocline resulted in a phytoplankton bloom and a Chls concentration of more than 1 mg/m3 in mid-November in this area and the Subantarctic waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vedernikov, “Dependence of the Assimilation Number and Concentration of Chlorophyll a on the Productivity of Water in Different Temperature Regions of the World Ocean,” Okeanologiya 15(4), 703–707 (1975).

    Google Scholar 

  2. V. I. Vedernikov and B. V. Konovalov, “Primary Production and Chlorophyll,” in Ecosystems of the Subantarctic Zone of Pacific Ocean, Ed. by M. E. Vinogradov and M. V. Flint (Nauka, Moscow, 1988), pp. 118–132 [in Russian].

    Google Scholar 

  3. G. G. Vinberg, Yu. G. Kabanova, O. I. Koblents-Mishke, et al., Guidelines to Identify the Primary Production of Organic Matter in Water Bodies by the Radiocarbon Method (Izd. Belorus. Gos. Univ., Minsk, 1960) [in Russian].

    Google Scholar 

  4. M. E. Vinogradov, E. A. Shushkina, N. P. Nezlin, et al., “Correlation between Different Parameters of the Ecosystem of the Epipelagic Zone of the World Ocean,” Okeanologiya 39(1), 64–74 (1999) [Oceanology 39 (1), 54–63 (1999)].

    Google Scholar 

  5. V. V. Volkovinskii, “The Main Environmental Factors Limiting the Level of Primary Production in the Ocean,” in Methods of Fishery Chemical and Oceanographic Studies (ONTI VNIRO, Moscow, 1968), Part 2, pp. 135–154 [in Russian].

    Google Scholar 

  6. A. B. Demidov, V. I. Vedernikov, and S. V. Sheberstov, “Spatiotemporal Variability of Chlorophyll a in the Atlantic and Indian Sectors of the Southern Ocean during February–April of 2000 According to Satellite and Expeditionary Data,” Okeanologiya 47(4), 546–558 (2007) [Oceanology 47 (4), 507–518 (2007)].

    Google Scholar 

  7. A. B. Demidov, V. I. Vedernikov, V. I. Gagarin, and V. I. Burenkov, “Phytoplankton Production Characteristics in the Eastern Atlantic and Atlantic Sector of the Southern Ocean in October-November 2004,” Okeanologiya 48(3), 396–410 (2008) [Oceanology 48 (3), 364–377 (2008)].

    Google Scholar 

  8. A. B. Demidov, V. I. Gagarin, and A. V. Grigor’ev, “Seasonal Variability of the Surface Chlorophyll “a” in the Drake Passage,” Okeanologiya 50(3), 355–370 (2010) [Oceanology 50 (3), 327–341 (2010)].

    Google Scholar 

  9. B. V. Konovalov and G. A. Belyaeva, “Primary Production and the Conditions of Its Formation in the Scotia Sea,” in Complex Studies of the Pelagic Area of the Southern Ocean, Ed. by L. A. Ponomareva (IO AN, Moscow, 1989), pp. 28–34 [in Russian].

    Google Scholar 

  10. B. V. Konovalov and G. A. Belyaeva, “Phytoplankton Pigments in the Surface Layer in Some Areas of Central and Southern Atlantic (November 1985–January 1986),” in Complex Studies of the Pelagic Area of the Southern Ocean, Ed. by L. A. Ponomareva (IO AN, Moscow, 1989), pp. 34–39 [in Russian].

    Google Scholar 

  11. B. V. Konovalov, V. A. Matyushenko, V. N. Pelevin, et al., “The Absorption of Light by Phytoplankton in High-Latitude Areas of the Southern Ocean,” Arctic and Antarctic 4(38), 80–91 (Nauka, Moscow, 2005).

    Google Scholar 

  12. O. I. Koblents-Mishke and V. I. Vedernikov, “Primary Production,” in Series Oceanology. Ocean Biology, Vol. 2: Biological Productivity of the Ocean, Ed. by M. E. Vinogradov (Nauka, Moscow, 1977), pp. 183–209 [in Russian].

    Google Scholar 

  13. D. Antoine, J.-M. André, and A. Morel, “Oceanic Primary Production 2. Estimation at Global Scale from Satellite (Coastal Zone Color Scanner) Chlorophyll,” Global Biogeochem. Cycles 10(1), 57–69 (1996).

    Article  Google Scholar 

  14. A. U. Bracher, “Photoacclimation of Phytoplankton in Different Biogeochemical Provinces of the Southern Ocean and Its Significance for Estimating Primary Production,” Ber. Polarforsch, No. 341, 1–88 (1999).

    Google Scholar 

  15. A. U. Bracher, B. M. A. Kroon, and M. I. Lucas, “Primary Production, Physiological State and Composition of Phytoplankton in the Atlantic Sector of the Southern Ocean,” Mar. Ecol. Progr. Ser. 190, 1–16 (1999).

    Article  Google Scholar 

  16. À. U. Bracher and M. M. Tilzer, “Underwater Light Field and Phytoplankton Absorbance in Different Surface Water Masses of the Atlantic sector of the Southern Ocean,” Polar Biol. 24(9), 687–696 (2001).

    Article  Google Scholar 

  17. F. P. Brandini, A. P. Boltovskoy, A. Piola, et al., “Multiannual Trends in Fronts and Distribution of Nutrients and Chlorophyll in the Southwestern Atlantic (30°–62°S),” Deep-Sea Res. I 47(6), 1015–1033 (2000).

    Article  Google Scholar 

  18. U. V. Bathmann, R. Scharek, C. Klaas, et al., “Spring Development of Phytoplankton Biomass and Composition in Major Water Masses of the Atlantic Sector of the Southern Ocean,” Deep-Sea Res. 44(1–2), 51–67 (1997).

    Google Scholar 

  19. R. L. Brightman and W. O. Smith, “Photosynthesis-Irradiance Relationships of Antarctic Phytoplankton during Austral Winter,” Mar. Ecol.: Proc. Ser. 53, 143–151 (1989).

    Article  Google Scholar 

  20. J. Campbell, D. Antoine, R. Armstrong, et al., “Comparison of Algorithms for Estimating Ocean Primary Production from Surface Chlorophyll, Temperature and Irradiance,” Global Biogeochem. Cycles 16(3), doi: 10.1029/2001GB001444 (2002).

  21. M.-E. Carr, M. A. M. Friedrichs, M. Schmeltz, et al., “A Comparison of Global Estimates of Marine Primary Production from Ocean Color,” Deep-Sea Res. II. 53(5–7), 741–770 (2006).

    Article  Google Scholar 

  22. C. G. Castro, A. F. Rios, M. D. Doval, and F. F. Perez, “Nutrient Utilization and Chlorophyll Distribution in the Atlantic Sector of the Southern Ocean during Austral Summer 1995–1996,” Deep-Sea Res. II. 49(4–5), 623–641 (2002).

    Article  Google Scholar 

  23. G. E. R. Deacon, “Physical and Biological Zonation in the Southern Ocean,” Deep-Sea Res. 29(1A), 1–15 (1982).

    Article  Google Scholar 

  24. A. E. Detmer and U. V. Bathmann, “Distribution Patterns of Autotrophic Pico- and Nanoplankton and Their Relative Contribution to Algal Biomass during Spring in the Atlantic Sector of the Southern Ocean,” Deep-Sea Res. II. 44(1–2) (1997).

  25. H. J. W. de Baar, J. T. M. de Jong, D. C. E. Bakker, et al., “Importance of Iron for Plankton Blooms and Carbon Dioxide Drawdown in the Southern Ocean,” Nature, No. 373, 412–415 (1995).

  26. H. J. W. de Baar, J. T. M. de Jong, R. F. Nolting, et al., “Low Dissolved Fe and the Absence of Bloom in the Remote Pacific Waters of the Southern Ocean,” Mar. Chem. 66(1–2), 1–34 (1999).

    Article  Google Scholar 

  27. S. Z. El-Sayed, “On the Productivity of the Southwest Atlantic Ocean and the Waters West of the Antarctic Peninsula,” in Antar. Res. Ser. Biology of the Antarctic Seas, Ed. by G. A. Llano and W. L. Schmitt (AGU, Washington, 1968), Vol. 3, pp. 15–47.

    Google Scholar 

  28. S. Z. El-Sayed, E. F. Mandelli, and Y. Sugimura, “Primary Organic Production in the Drake Passage and Bransfield Strait,” in Antar. Res. Ser. Biology of the Antarctic Seas, Ed. by M. O. Lee (AGU, Washington, 1964), Vol. 1, pp. 1–11.

    Google Scholar 

  29. P. Falkowski, “Light-Shade Adaptation and Assimilation Numbers,” J. Plankton Res. 3(2), 203–216 (1981).

    Article  Google Scholar 

  30. P. W. Froneman, E. A. Pakhomov, and M. G. Balarin, “Size-Fractionated Phytoplankton Biomass, Production and Biogenic Carbon Flux in the Eastern Atlantic Sector of the Southern Ocean in the Late Austral Summer,” Deep-Sea Res. II. 51(22–24), 2715–2729 (2004).

    Article  Google Scholar 

  31. D. T. Fitch and K. J. Moore, “Wind Speed Influence on Phytoplankton Bloom Dynamics in the Southern Ocean Marginal Ice Zone,” J. Geophys. Res. 112(8) (2007).

  32. C. A. E. Garcia, V. M. T. Garcia, and C. R. McClain, “Evaluation of SeaWiFS Chlorophyll Algorithms in the Southwestern Atlantic and Southern Oceans,” Remote Sens. Environ. 95(1), 125–137 (2005).

    Article  Google Scholar 

  33. General Circulation of the Southern Ocean: Status and Recommendations for Search (SCOR, Genewa, 1985).

  34. O. Holm-Hansen and C. D. Hewes, “Deep Chlorophyll-a Maxima (DCMs) in Antarctic Waters. I. Relationship between DCMs and the Physical, Chemical, and Optical Conditions in the Upper Water Column,” Polar Biol. 27(11), 699–710 (2004).

    Article  Google Scholar 

  35. O. Holm-Hansen, C. D. Hewes, V. E. Villafañe, et al., “Distribution of Phytoplankton and Nutrients in the Area around Elephant Island, Antarctica,” Polar Biol. 18(2), 145–153 (1997).

    Article  Google Scholar 

  36. O. Holm-Hansen and G. B. Mitchell, “Spatial and Temporal Distribution of Phytoplankton and Primary Production in the Western Bransfield Strait Region,” Deep-Sea Res. 38(8–9A), 961–980 (1991).

    Article  Google Scholar 

  37. O. Holm-Hansen and B. Riemann, “Chlorophyll a Determination: Improvements in Methodology,” Oikos 30, 438–447 (1978).

    Article  Google Scholar 

  38. M. Huntley, D. M. Karl, P. Niiler, and O. Holm-Hansen, “Research on Antarctic Coastal Ecosystem Rates (RACER): An Interdisciplinary Field Experiment,” Deep-Sea Res. 38(8–9A), 911–941 (1991).

    Article  Google Scholar 

  39. W. E. Helbling, V. E. Villafañe, and O. Holm-Hansen, “Variability of Phytoplankton Distribution and Primary Production around Elephant Island, Antarctica, during 1990–1993,” Polar Biol. 15(4), 233–246 (1995).

    Article  Google Scholar 

  40. J. L. Iriarte, A. Kusch, J. Osses, et al., “Phytoplankton Biomass in the Subantarctic Area of the Straits of Magellan (53°S), Chile during Spring-Summer 1997/1998,” Polar Biol. 24(3), 154–162 (2001).

    Article  Google Scholar 

  41. JGOFS (Joint Global Ocean Flux Study Protocols), Photosynthesis Measurements Task Team. Report of Meeting Held in Carquerianne, September 14–16, 1993.

  42. JGOFS (Joint Global Ocean Flux Study Protocols), in Protocols for the Joint Global Ocean Flux Study Protocols (JGOFS). Core Meas, Manual Guides (1994), pp. 119–122.

  43. S. W. Jeffrey and G. F. Humphrey, “New Spectrophotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton,” Biochem. Physiol. Pflanzen. 167(2), 191–194 (1975).

    Google Scholar 

  44. A. Longhurst, “Seasonal Cycles of Pelagic Production and Consumption,” Progr. Oceanogr. 36(2), 77–167 (1995).

    Article  Google Scholar 

  45. L. M. Lorenzo, B. Arbones, F. G. Figueiras, et al., “Photosynthesis, Primary Production and Phytoplankton Growth in Gerlache and Bransfield Straits during Austral Summer: Cruise FRUELA 95,” Deep-Sea Res. II 49(4–5), 707–721 (2002).

    Article  Google Scholar 

  46. K. Leblanc, B. Quéguiner, M. Fiala, et al., “Particulate Biogenic Silica and Carbon Production Rates and Particulate Matter Distribution in the Indian Sector of the Subantarctic Ocean,” Deep-Sea Res. II 49(16), 3189–3206 (2002).

    Article  Google Scholar 

  47. C. Mengelt, M. R. Abbott, J. A. Barth, et al., “Phytoplankton Pigment Distribution in Relation to Silicic Acid, Iron and the Physical Structure across the Antarctic Polar Front, 170°W, during Austral Summer,” Deep-Sea Res. II. 48(19–20), 4081–4100 (2001).

    Article  Google Scholar 

  48. G. B. Mitchell, E. A. Brody, O. Holm-Hansen, et al., “Light Limitation of Phytoplankton Biomass and Macronutrient Utilization in the Southern Ocean,” Limnol. Oceanogr. 36(8), 1662–1677 (1991).

    Article  Google Scholar 

  49. G. B. Mitchell and O. Holm-Hansen, “Observation and Modeling of the Antarctic Phytoplankton Crop in Relation to Mixing Depth,” Deep-Sea Res. 38(8–9), Part A, 981–1007 (1991).

    Article  Google Scholar 

  50. A. S. Mikaelyan and G. A. Belyaeva, “Chlorophyll “a” Content in Cells of Antarctic Phytoplankton,” Polar Biol. 15(6), 437–445 (1995).

    Article  Google Scholar 

  51. E. F. Mandelli, “Enhanced Photosynthetic Assimilation Ratios in Antarctic Polar Front (Convergence) Diatoms,” Limnol. Oceanogr. 12(3), 484–491 (1967).

    Article  Google Scholar 

  52. R. F. C. Mantoura, S. W. Jeffrey, C. A. Liewellyn, et al., “Comparison between Spectrophotometric, Fluorometric and HPLC Methods for Chlorophyll Analysis,” in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (UNESCO, Paris, 1997), pp. 361–380.

    Google Scholar 

  53. J. Neveux, D. Delmas, J. Romano, et al., “Comparison of Chlorophyll and Phaeopigments Determination by Spectrophotometric, Fluorometric, Spectrofluorometric and HPLC Methods,” Mar. Microb. Food Webs 4(2), 217–238 (1990).

    Google Scholar 

  54. S. Nicol, T. Pauly, N. L. Bindoff, and P. G. Strutton, “BROKE” a Biological/Oceanography Survey Off the Coast of East Antarctica Carried out in January—March 1996,” Deep-Sea Res. II. 47(12–13), 2281–2613 (2000).

    Article  Google Scholar 

  55. D. M. Nelson and W. O. Smith, Jr., “Sverdrup Revisited: Critical Depths, Maximum Chlorophyll Levels, and the Control of Southern Ocean Productivity by the Irradiance-Mixing Regime,” Limnol. Oceanogr. 36(8), 1650–1661 (1991).

    Article  Google Scholar 

  56. A. H. Orsi, T. Whitworth III, and W. D. Nowlin, Jr., “On the Meridianal Extent and Fronts of the Antarctic Circumpolar Current,” Deep-Sea Res. I. 44(5), 641–673 (1995).

    Google Scholar 

  57. I. Peeken, “Photosynthetic Pigment Fingerprints as Indicators of Phytoplankton Biomass and Development in Different Water Masses of the Southern Ocean during Austral Spring,” Deep-Sea Res. II. 44(1–2), 261–282 (1997).

    Article  Google Scholar 

  58. C. Pedros-Alio, J. Calderon-Paz, N. Guixa, et al., “Microbial Plankton across Drake Passage,” Polar Biol. 16(8), 613–622 (1996).

    Article  Google Scholar 

  59. R. T. Pollard, M. I. Lucas, and J. F. Read, “Physical Controls on Biogeochemical Zonation in the Southern Ocean,” Deep-Sea Res. II. 49(16), 3289–3305 (2002).

    Article  Google Scholar 

  60. P. Pondaven, D. Ruiz-Pino, J. N. Druon, et al., “Factors Controlling Silicon and Nitrogen Biogeochemical Cycles in High Nutrient Low Chlorophyll Systems (the Southern Ocean and the North Pacific): Comparison with a Mesotrophic System (the North Atlantic),” Deep-Sea Res. I. 46(11), 1923–1968 (1999).

    Article  Google Scholar 

  61. B. Quéguiner, P. Tréguer, I. Peeken, and R. Scharek, “Biogeochemical Dynamics and the Silicon Cycle in the Atlantic Sector of the Southern Ocean during Austral Spring 1992,” Deep-Sea Res. II. 44(1–2), 69–89 (1997).

    Article  Google Scholar 

  62. A. C. Redfield, B. H. Ketchum, and F. A. Richards, “The Influence of Organisms on the Composition of Sea Water,” in The Sea, Ideas and Observation (Interscience Publ., New York, 1963), Vol. 2, pp. 26–77.

    Google Scholar 

  63. SCOR-UNESCO. Report of SCOR-UNESCO working group 17 on determination of photosynthetic pigments in Sea Water (UNESCO Monogr. Oceanogr. Methodol, Paris, 1966), Vol. 1, pp. 9–18.

    Google Scholar 

  64. E. Steemann Nielsen, “The Use of Radioactive Carbon (C14) for Measuring Organic Production in the Sea,” J. Cons. Perm. Ins. Explor. Mer., No. 18, 117–140 (1952).

  65. V. H. Strass, U. V. Bathmann, M. M. Rutgers Van Den Loeff, et al., “Mesoscale Physics, Biogeochemistry and Ecology of the Antarctic Polar Front, Atlantic Sector: An Introduction to and Summary of Cruise ANT XIII/2 of R. V. Polarstern,” Deep-Sea Res. II. 49(18), 3707–3711 (2002).

    Article  Google Scholar 

  66. V. H. Strass, A. C. Naveira Carabato, R. T. Pollard, et al., “Mesoscale Frontal Dynamics: Shaping the Environment of Primary Production in the Antarctic Circumpolar Current,” Deep-Sea Res. II. 49(18), 3735–3769 (2002).

    Article  Google Scholar 

  67. P. N. Sedwick, S. Blain, B. Quéguiner, et al., “Resource Limitation of Phytoplankton Growth in the Groset Basin, Subantarctic,” Deep-Sea Res. II. 49(16), 3327–3349 (2002).

    Article  Google Scholar 

  68. H. A. Sievers and W. D. Nowlin, Jr., “The Stratification and Water Masses at Drake Passage,” J. Geophys. Res. 89(C6), 10489–10514 (1984).

    Article  Google Scholar 

  69. U. Sommer and H.-H. Stabel, “Near Surface Nutrient and Phytoplankton Distribution in the Drake Passage during Early December,” Polar Biol. 5(2), 107–110 (1986).

    Article  Google Scholar 

  70. J. E. Tremblay, M. I. Lucas, G. Kattner, et al., “Significance of the Polar Frontal Zone for Large-Sized Diatoms and New Production during Summer in the Atlantic Sector of the Southern Ocean,” Deep-Sea Res. II. 49(18), 3793–3811 (2002).

    Article  Google Scholar 

  71. D. Turner, N. Owens, and J. Priddle, “Preface: Southern Ocean JGOFS: The U.K. “STERNA” Study in the Bellingshausen Sea,” Deep-Sea Res. II. 42(4–5), 905–906 (1995).

    Article  Google Scholar 

  72. V. E. Villafañe, E. W. Helbling, and O. Holm-Hansen, “Spatial and Temporal Variability of Phytoplankton Biomass and Taxonomic Composition around Elephant Island, Antarctica, during the Summer of 1990–1993,” Mar. Biol. 123(4), 677–686 (1995).

    Article  Google Scholar 

  73. C. Veth, I. Peeken, and R. Scharek, “Physical Anatomy of Fronts and Surface Waters in the ACC near the 6°W Meridian During Austral Spring 1992,” Deep-Sea Res. II. 44(1–2), 23–49 (1997).

    Article  Google Scholar 

  74. T. Whitworth III, “Sonation and Geostrophic Flow of the Antarctic Circumpolar Current at Drake Passage,” Deep-Sea Res. 27(7), 497–507 (1980).

    Article  Google Scholar 

  75. A. Wulff and S.-Å Wänberg, “Spatial and Vertical Distribution of Phytoplankton Pigments in the Eastern Atlantic Sector of the Southern Ocean,” Deep-Sea Res. II. 51(22–24), 2701–2713 (2004).

    Article  Google Scholar 

  76. O. A. Yunev, V. I. Vedernikov, O. Basturk, et al., “Long-Term Variations of Surface Chlorophyll “A” and Primary Production in the Open Black Sea,” Mar. Ecol.: Proc. Ser. 230, 11–28 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Demidov.

Additional information

Original Russian Text © A.B. Demidov, S.A. Mosharov, V.I. Gagarin, N.D. Romanova, 2011, published in Okeanologiya, 2011, Vol. 51, No. 2, pp. 293–306.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidov, A.B., Mosharov, S.A., Gagarin, V.I. et al. Spatial variability of the primary production and chlorophyll a concentration in the drake passage in the austral spring. Oceanology 51, 281–294 (2011). https://doi.org/10.1134/S0001437011020056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437011020056

Keywords

Navigation