Skip to main content
Log in

Psychrotrophic Hydrocarbon-Oxidizing Bacteria Isolated from Bottom Sediments of Peter the Great Bay, Sea of Japan

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Five strains of psychrotrophic hydrocarbon-oxidizing bacteria were isolated from the bottom sediments of Peter the Great Bay of the Sea of Japan. They were classified into the following species: Rhodococcus erythropolis, Rhodococcus sp., Sphingomonas sp., Pseudomonas sp., and Alcanivorax sp. All studied bacteria showed high oxidizing ability in relation to the decomposition of n-alkanes (C9–C27), phytane, pristane, and polycyclic aromatic hydrocarbons at 5 and 22°C. At the same time, the degradation of hydrocarbons was more intense at 5°C. Despite the different taxonomic affiliations of the obtained microorganisms, all strains primarily utilized short- (C9–C13) and long-chain (C21–27) alkanes, as well as polycyclic aromatic hydrocarbons. The highest hydrocarbon-oxidizing activity was shown by the strain Rhodococcus erythropolis AP_291. The latter utilized more than 50% of all hydrocarbons in the model mixture during the first week of the experiment at 5°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. I. Alekperova, “On the role of oil-oxidizing bacteria in self-cleaning of the Apsheron shelf of the Caspian Sea polluted with Samur oil,” Vestnik MGOU No. 2, 6–9 (2009).

    Google Scholar 

  2. L. A. Gaiko, “Long-term variability of the temperature of water and air near Russian shores of the Sea of Japan based on hydrometereological stations’ data”, in Marine Science Basis for Studies of Far-Eastern Seas and the North-Western Part of the Pacific Ocean, Ed. by V. A. Akulichev (Dal’nauka, Vladivostok, 2013), pp. 64–78.

  3. G. Gottshalk, Bacterial Metabolism (Springer, 1979; Mir, Moscow, 1982).

  4. Primorskaya gazeta, No. 75 (1569) (2018).

  5. Yu. I. Zuenko, “Seasonal and interannual variations of water temperature in the north-western part of the Sea of Japan,” Izvestiya TINRO 131, 3–21 (2002).

    Google Scholar 

  6. Yu. A. Izrael’ and A. V. Tsyban’, Anthropogenic Ecology of Ocean (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  7. T. V. Koronelli, S. G. Dermicheva, and V. V. Il’inskii, “Species composition of hydrocarbon-degrading bacteriocenoses of the aquatic ecosystems of various climatic zones,” Mikrobiologiya 63, 917–923 (1994).

    Google Scholar 

  8. T. V. Koronelli, V. V. Il’inskii, V. A. Yanushka, and T. I. Krasnikova, “Hydrocarbon-degrading microflora of the aquatic areas of the Baltic Sea and the Curonian lagoon polluted by the oil spillage,” Mikrobiologiya 56, 472–478 (1987).

    Google Scholar 

  9. L. S. Buzoleva, RF Patent No. 2520084 (2014).

  10. PND F 12.1:2:2.2:2.3:3.2-03 Methodical Recommendations. Sampling of Soils, Earth Material, Bottom Sediments, Silts, Sewage Sludge, Industrial Waste Mud, and Production and Consumption Wastes (RF Ministry of Natural Resources, Moscow, 2003) [in Russian].

  11. T. P. Turova, B. B. Kuznetsov, E. V. Novikova et al., “Heterogeneity of the Nucleotide Sequences of the 16S rRNA Genes of the Type Strain of Desulfotomaculum kuznetsovii,” Microbiology 70, 678–684 (2001).

    Article  Google Scholar 

  12. S. F. Altschul, T. L. Madden, A. A. Schaffer, et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Res. 5, 3389–3402 (1997).

    Article  Google Scholar 

  13. V. Andreoni, S. Bernasconi, M. Colombo, et al., “Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN,” Environ. Microbiol 2, 572–577 (2000).

    Article  Google Scholar 

  14. L. S. Buzoleva, E. A. Bogatyrenko, M. A. Repina, and N. L. Belkova, “Oil-oxidizing activity of bacteria isolated from south Sakhalin coastal waters,” Microbiology 86, 338–345 (2017).

    Article  Google Scholar 

  15. S. K. Chaerun, K. Tazaki, R. Asada, and K. Kogure, “Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: Isolation and characterization of hydrocarbon-degrading bacteria,” Environ. Int. 30, 911–922 (2004).

    Article  Google Scholar 

  16. N. Das and P. Chandran, “Microbial degradation of petroleum hydrocarbon contaminants: an overview,” Biotechnol. Res. Int. 2011, 941810 (2011).

    Google Scholar 

  17. Y. Delegan, L. Valentovich, K. Petrikov, et al., “Complete genome sequence of Rhodococcus Erythropolis X5, a psychrotrophic hydrocarbon-degrading biosurfactant-producing bacterium,” Microbiol. Resour. Announc. 8, e01234-19 (2019).https://doi.org/10.1128/MRA.01234-19

    Article  Google Scholar 

  18. U. Deppe, H. -H. Richnow, W. Michaelis, and G. Antranikian, “Degradation of crude oil by an arctic microbial consortium,” Extremophiles 9, 461–470 (2005).

    Article  Google Scholar 

  19. M. J. de Smet, G. Eggink, B. Witholt, et al., “Characterization of intracellular inclusions formed by Pseudomonas Oleovorans during growth on octane,” J. Bacteriol. 154, 870–878 (1983).

    Article  Google Scholar 

  20. D. Ghosal, S. Ghosh, T. K. Dutta, and Y. Ahn, “Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review,” Front. Microbiol 7, 1369 (2016).https://doi.org/10.3389/fmicb.2016.01369

    Article  Google Scholar 

  21. A. Hara, K. Syutsubo, and S. Harayama, “Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation,” Environ. Microbiol 5, 746–753 (2003).

    Article  Google Scholar 

  22. K. Hupert-Kocurek, U. Guzik, and D. Wojcieszynska, “Characterization of Catechol 2,3-Dioxygenase from Planococcus Sp. Strain S5 induced by high phenol concentration,” Acta Biochim. Pol. 59, 345–351 (2012).

    Article  Google Scholar 

  23. T. Ishige, A. Tani, K. Takabe, et al., “Wax ester production from N-alkanes by Acinetobacter Sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme a reductase,” Appl. Environ. Microbiol. 68, 1192–1195 (2002).

    Article  Google Scholar 

  24. R. Kalscheuer, T. Stoveken, U. Malkus, et al., “Analysis of storage lipid accumulation in Alcanivorax Borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria,” J. Bacteriol. 189, 918–928 (2007).

    Article  Google Scholar 

  25. Y. Kasai, H. Kishira, K. Syutsubo, and S. Harayama, “Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident,” Environ. Microbiol 3, 246–255 (2001).

    Article  Google Scholar 

  26. D. Kim, K. Y. Choi, M. Yoo, et al., “Biotechnological potential of Rhodococcus biodegradative pathways,” J. Microbiol. Biotechnol 28, 1037–1051 (2018).

    Article  Google Scholar 

  27. S. J. Kim, O. Kweon, J. B. Sutherland, et al., “Dynamic response of Mycobacterium Vanbaalenii PYR-1 to BP deep-water horizon crude oil,” Appl. Environ. Microbiol. 81, 4263–4276 (2015).

    Article  Google Scholar 

  28. L. A. Kulakov, S. Chen, C. C. Allen, and M. J. Larkin, “Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene,” Appl. Environ. Microbiol. 71, 1754–1764 (2005).

    Article  Google Scholar 

  29. S. Kumar, G. Stecher, M. Li, et al., “MEGA X: molecular evolutionary genetics analysis across computing platforms,” Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  Google Scholar 

  30. D. J. Lane, B. Pace, G. J. Olsen, et al., “Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses,” P. Natl. Acad. Sci. USA 82, 6955–6959 (1985).

    Article  Google Scholar 

  31. M. J. Larkin, L. A. Kulakov, and C. C. Allen, “Biodegradation and Rhodococcus-masters of catabolic versatility,” Curr. Opin. Biotechnol 16, 282–290 (2005).

    Article  Google Scholar 

  32. A. Lo Giudice, V. Bruni, M. De Domenico, and L. Michaud, ”Psychrophiles – cold adapted hydrocarbon – degrading microorganisms,” in Handbook of Hydrocarbon and Lipid Microbiology, Ed. by K. N. Timmis (Springer, Berlin, 2010), pp. 1897–1921.

    Google Scholar 

  33. R. Margesin, G. Neuner, and K. B. Storey, “Cold-loving microbes, plants, and animals – fundamental and applied aspects,” Naturwissenschaften 94, 77–99 (2007).

    Article  Google Scholar 

  34. M. M. Marin, T. H. M. Smits, J. B. van Beilen, and F. Rojo, “The alkane hydroxylase gene of Burkholderia Cepacia RR10 is under catabolite repression control,” J. Bacteriol. 183, 4202–4209 (2001).

    Article  Google Scholar 

  35. A. Maruyama, H. Ishiwata, K. Kitamura, et al., “Dynamics of microbial populations and strong selection for Cycloclasticus Pugetii following the Nakhodka oil spill,” Microb. Ecol. 46, 442–453 (2003).

    Article  Google Scholar 

  36. U. Naeem and M. A. Qazi, “Leading edges in bioremediation technologies for removal of petroleum hydrocarbons,” Environ. Sci. Pollut. Res. Int. 27, 27370–27382 (2020).

    Article  Google Scholar 

  37. A. D. Novikov, K. V. Lavrov, A. S. Kasianov, et al., “Draft genome sequence of Rhodococcus Erythropolis HX7, a psychrotolerant soil-derived oil degrader,” Microbiol. Resour. Announc. 10, e01353-20 (2021).https://doi.org/10.1128/MRA.01353-20

    Article  Google Scholar 

  38. O. Pinyakong, H. Habe, and T. Omori, “The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs),” J. Gen. Appl. Microbiol. 49, 1–19 (2003).

    Article  Google Scholar 

  39. K. G. Porter and Y. S. Feig, “The use of DAPI for identifying and counting aquatic microflora,” Limnol. Oceanogr. 25, 943–948 (1980).

    Article  Google Scholar 

  40. R. P. Swannell, K. Lee, and M. McDonagh, “Field evaluations of marine oil spill bioremediation,” Microbiol. Rev. 60, 342–365 (1996).

    Article  Google Scholar 

  41. D. Tanaka, S. Tanaka, Y. Yamashiro, and S. Nakamura, “Distribution of oil-degrading bacteria in coastal seawater, Toyama Bay, Japan,” Environ. Toxicol 23, 563–569 (2008).

    Article  Google Scholar 

  42. J. B. van Beilen, Z. Li, W. A. Duetz, T. H. M. Smits, and B. Witholt, “Diversity of alkane hydroxylase systems in the environment,” Oil Gas Sci. Technol 58, 427–440 (2003).

    Article  Google Scholar 

  43. J. B. van Beilen and E. G. Funhoff, “Alkane hydroxylases involved in microbial alkane degradation,” Appl. Microbiol. Biotechnol. 74, 13–21 (2007).

    Article  Google Scholar 

  44. J. D. van Hamme, A. Singh, and O. P. Ward, “Recent advances in petroleum microbiology,” Microbiol. Mol. Rev 67, 503–549 (2003).

    Article  Google Scholar 

  45. L. G. Whyte, J. Hawari, E. Zhou, et al., “Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic Rhodococcus sp.,” Appl. Environ. Microbiol. 64, 2578–2584 (1998).

    Article  Google Scholar 

  46. J. Xue, Y. Yu, Y. Bai, et al., “Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review,” Curr. Microbiol. 71, 220–228 (2015).

    Article  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 19-74-00028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bogatyrenko.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatyrenko, E.A., Kim, A.V., Polonik, N.S. et al. Psychrotrophic Hydrocarbon-Oxidizing Bacteria Isolated from Bottom Sediments of Peter the Great Bay, Sea of Japan. Oceanology 62, 379–389 (2022). https://doi.org/10.1134/S000143702203002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143702203002X

Keywords:

Navigation