Skip to main content
Log in

Lipid synthesis in macrophages during inflammation in vivo: Effect of agonists of peroxisome proliferator activated receptors α and γ and of retinoid X receptors

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effects of peroxisome proliferator activated receptors α and γ (PPAR-α and PPAR-γ) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57B1 macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18–24 h after injection and was decreased 5–7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2–3-fold decreased. Addition of NLDL (50 μg/ml) or AcLDL (25 μg/ml) into the incubation medium of activated macrophages induced 9–14-and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-α, or PPAR-γ agonists—9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively—30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 μM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-α, or PPAR-γ agonists inhibited lipid synthesis and induction of cholesteryl ester synthesis in inflammatory macrophages caused by capture of native or modified LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AcLDL:

acetylated low density lipoprotein

DMSO:

dimethylsulfoxide

LPS:

E. coli lipopolysaccharide

NLDL:

native low density lipoprotein

PBS:

phosphatebuffered saline (0.9% NaCl, 50 mM phosphate buffer)

PPAR:

peroxisome proliferator activated receptor

RXR:

retinoid X receptor

SR:

scavenger receptor

References

  1. Khovidhunkit, W., Kim, M.-S., Memon, R. A., Shigenaga, J. K., Moser, A. H., Feingold, K. R., and Grunfeld, C. (2004) J. Lipid Res., 45, 1169–1196.

    Article  PubMed  CAS  Google Scholar 

  2. Perminova, O. M., Volsky, N. N., and Dushkin, M. I. (2004) System of Cytokines: Theoretical and Clinical Aspects (Kozlov, V. A., and Sennikov, S. V., eds.) Nauka, Novosibirsk, pp. 109–121.

    Google Scholar 

  3. Getz, G. S. (2005) J. Lipid Res., 46, 619–622.

    Article  PubMed  CAS  Google Scholar 

  4. D’Aviro, H., Melo, R. C., Pirreira, G. G., Werneck-Barroso, E., Castro-Faria-Neto, H. C., and Bozza, P. T. (2006) J. Immunol., 176, 3087–3097.

    Google Scholar 

  5. Majawar, Z., Rose, H., Morrow, M. P., Pushkarsky, T., Dubrovsky, L., Mukhamedova, N., Fu, Y., Dart, A., Orenstein, J. M., Bobryshev, Y. V., Bukrinsky, M., and Sviridov, D. (2006) Plos Biol., 4, 1970–1983.

    Google Scholar 

  6. Witztum, J. L. (2005) J. Clin. Invest., 115, 2072–2075.

    Article  PubMed  CAS  Google Scholar 

  7. Ricote, M., Valledor, A. F., and Glass, C. K. (2004) Arterioscler. Tromb. Vasc. Biol., 24, 230–258.

    Article  CAS  Google Scholar 

  8. Lingren, F. T., Jensen, L. C., and Hatch, F. F. (1972) in Blood Lipids and Lipoproteins (Neson, G. J., ed.) Willey Intersci., N. Y., pp. 181–274.

    Google Scholar 

  9. Brown, M. S., Ho, Y. K., and Goldstein, J. L. (1980) J. Biol. Chem., 255, 9344–9352.

    PubMed  CAS  Google Scholar 

  10. Bilheimer, D. W., Tisenberg, S., and Levy, R. J. (1972) Biochim. Biophys. Acta, 260, 212–221.

    PubMed  CAS  Google Scholar 

  11. Kozak, W., Kluger, M. J., Kozak, A., Wachulec, M., and Dokladny, K. (2000) Am. J. Physiol. Regul. Integr. Comp. Physiol., 279, R455–R460.

    PubMed  CAS  Google Scholar 

  12. Cuzzocrea, S., Pisano, B., Dugo, L., Ianaro, A., Britti, D., Patel, N. S., Di Paola, R., Genovese, T., Di Rosa, M., Caputi, A. P., and Thiemermann, C. (2004) Intens. Care Med., 30, 951–956.

    Article  Google Scholar 

  13. Wilson, D. B., Wyatt, D. P., and Gookin, J. L. (1990) J. Craniofac. Genet. Dev. Biol., 10, 75–81.

    PubMed  CAS  Google Scholar 

  14. Dushkin, M. I., Kornyush, E. A., Polyakov, L. M., Dmitrienko, G. I., Yunonina, G. A., and Krylova, I. I. (1992) Biokhimiya, 57, 1181–1191.

    CAS  Google Scholar 

  15. Brown, M. S., Faust, J. R., and Goldstein, J. L. (1978) J. Biol. Chem., 253, 1121–1128.

    PubMed  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.

    PubMed  CAS  Google Scholar 

  17. Hogg, N., and Balkwill, F. R. (1981) Immunology, 43, 197–204.

    PubMed  CAS  Google Scholar 

  18. Dushkin, M. I., Perminova, O. M., Safina, A. F., and Volsky, N. N. (2004) Zh. Mikrobiol. Epidemiol. Immunol., 6, 52–56.

    Google Scholar 

  19. Lakio, L., Lehto, M., Tuomainen, A. M., Jauhiainen, M., Malle, E., Asikainen, S., and Pussinen, P. J. (2006) J. Endotoxin Res., 12, 57–64.

    PubMed  CAS  Google Scholar 

  20. Oiknine, J., and Aviram, M. (1992) Arterioscler. Tromb. Vasc. Biol., 12, 745–753.

    CAS  Google Scholar 

  21. Dushkin, M. M., Vereshchagin, E. E., Grebenshchikov, A. Yu., Safina, A. F., and Shvartz, Ya. Sh. (1999) Byul. Eksp. Biol. Med., 127, 71–74.

    CAS  Google Scholar 

  22. Funk, J. L., Feingold, K. R., Moser, A. H., and Grunfeld, C. (1993) Atherosclerosis, 98, 67–82.

    Article  PubMed  CAS  Google Scholar 

  23. Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W.-Y. (2005) J. Clin. Invest., 115, 2352–2360.

    Google Scholar 

  24. Van Lenten, B. J., and Fogelman, A. M. (1992) J. Immunol., 148, 112–116.

    PubMed  Google Scholar 

  25. Welch, J. S., Ricote, M., Akiyama, T. E., Gonzalez, F. J., and Glass, C. K. (2003) Proc. Natl. Acad. Sci. USA, 100, 6712–6717.

    Article  PubMed  CAS  Google Scholar 

  26. Li, A. C., Binder, C. J., Gutierrez, A., Brown, K. K., Plotkin, C. R., Pattison, J. W., Valledor, A. F., Davis, R. A., Willson, T. M., Witztum, J. L., Palinski, W., and Glass, C. K. (2004) J. Clin. Invest., 114, 1564–1576.

    PubMed  CAS  Google Scholar 

  27. Chinetti, G., Lestavel, S., Fruchart, J. C., Clavey, V., and Staels, B. (2003) Circ. Res., 92, 212–217.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Dushkin.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 3, pp. 364–374.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posokhova, E.N., Khoshchenko, O.M., Chasovskikh, M.I. et al. Lipid synthesis in macrophages during inflammation in vivo: Effect of agonists of peroxisome proliferator activated receptors α and γ and of retinoid X receptors. Biochemistry Moscow 73, 296–304 (2008). https://doi.org/10.1134/S0006297908030097

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908030097

Key words

Navigation