Skip to main content
Log in

Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It was proposed that increased level of mitochondrial reactive oxygen species (ROS), mediating execution of the aging program of an organism, could also be critical for neoplastic transformation and tumorigenesis. This proposal was addressed using new mitochondria-targeted antioxidant SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) that scavenges ROS in mitochondria at nanomolar concentrations. We found that diet supplementation with SkQ1 (5 nmol/kg per day) suppressed spontaneous development of tumors (predominantly lymphomas) in p53-/- mice. The same dose of SkQ1 inhibited the growth of human colon carcinoma HCT116/p53-/- xenografts in athymic mice. Growth of tumor xenografts of human HPV-16-associated cervical carcinoma SiHa was affected by SkQ1 only slightly, but survival of tumor-bearing animals was increased. It was also shown that SkQ1 inhibited the tumor cell proliferation, which was demonstrated for HCT116 p53-/- and SiHa cells in culture. Moreover, SkQ1 induced differentiation of various tumor cells in vitro. Coordinated SkQ1-initiated changes in cell shape, cytoskeleton organization, and E-cadherin-positive intercellular contacts were observed in epithelial tumor cells. In Ras- and SV40-transformed fibroblasts, SkQ1 was found to initiate reversal of morphological transformation of a malignant type, restoring actin stress fibers and focal adhesion contacts. SkQ1 suppressed angiogenesis in Matrigel implants, indicating that mitochondrial ROS could be important for tumor angiogenesis. This effect, however, was less pronounced in HCT116/p53-/- tumor xenografts. We have also shown that SkQ1 and related positively charged antioxidants are substrates of the P-glycoprotein multidrug resistance pump. The lower anti-tumor effect and decreased intracellular accumulation of SkQ1, found in the case of HCT116 xenografts bearing mutant forms of p53, could be related to a higher level of P-glycoprotein. The effects of traditional antioxidant N-acetyl-L-cysteine (NAC) on tumor growth and tumor cell phenotype were similar to the effects of SkQ1 but more than 1,000,000 times higher doses of NAC than those of SkQ1 were required. Extremely high efficiency of SkQ1, related to its accumulation in the mitochondrial membrane, indicates that mitochondrial ROS production is critical for tumorigenesis at least in some animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCF:

2′,7′-dichlorodihydrofluorescein diacetate

FBS:

fetal bovine serum

MDR:

multiple drug resistance

NAC:

N-acetyl-L-cysteine

PBS:

phosphate-buffered saline

ROS:

reactive oxygen species

SkQ1:

10-(6′-plastoquinonyl) decyltriphen-ylphosphonium

SkQR1:

10-(6′-plastoquinonyl) decylrhodamine 19

References

  1. Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.

    Article  CAS  Google Scholar 

  2. Hussain, S. P., Hofseth, L. J., and Harris, C. C. (2003) Nat. Rev. Cancer, 3, 276–285.

    Article  CAS  PubMed  Google Scholar 

  3. Wallace, D. C. (2005) Cold Spring Harbor Symp. Quant. Biol., 70, 363–374.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, W. S. (2006) Cancer Metastasis Rev., 25, 695–705.

    Article  CAS  PubMed  Google Scholar 

  5. Blanchetot, C., and Boonstra, J. (2008) Crit. Rev. Eukaryot. Gene Expr., 18, 35–45.

    CAS  PubMed  Google Scholar 

  6. Kopnin, B. P. (2007) Mol. Biol. (Moscow), 41, 369–380.

    CAS  Google Scholar 

  7. Giles, G. I. (2006) Curr. Pharm. Des., 12, 4427–4443.

    Article  CAS  PubMed  Google Scholar 

  8. Nagai, H., Noguchi, T., Takeda, K., and Ichijo, H. (2007) J. Biochem. Mol. Biol., 40, 1–6.

    CAS  PubMed  Google Scholar 

  9. Alexandrova, A. Y., Kopnin, P. B., Vasiliev, J. M., and Kopnin, B. P. (2006) Exp. Cell Res., 312, 2066–2073.

    Article  CAS  PubMed  Google Scholar 

  10. Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., and Chumakov, P. M. (2005) Nat. Med., 11, 1306–1313.

    Article  CAS  PubMed  Google Scholar 

  11. Kopnin, P. B., Agapova, L. S., Kopnin, B. P., and Chumakov, P. M. (2007) Cancer Res., 67, 4571–4578.

    Article  Google Scholar 

  12. Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T. K., Hampton, G. M., and Wahl, G. M. (2002) Mol. Cell., 9, 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  13. Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997) Science, 275, 1649–1652.

    Article  CAS  PubMed  Google Scholar 

  14. Gerald, D., Berra, E., Frapart, Y. M., Chan, D. A., Giaccia, A. J., Mansuy, D., Pouyssegur, J., Yaniv, M., and Mechta-Grigoriou, F. (2004) Cell, 118, 781–794.

    Article  CAS  PubMed  Google Scholar 

  15. Khromova, N. V., Kopnin, P. B., Stepanova, E. V., Agapova, L. S., and Kopnin, B. P. (2008) Cancer Lett., submitted (Ms#CAN-S-08-00360).

  16. Xia, C., Meng, Q., Liu, L. Z., Rojanasakul, Y., Wang, X. R., and Jiang, B. H. (2007) Cancer Res., 67, 10823–10830.

    Article  CAS  PubMed  Google Scholar 

  17. Kopnin, B. P., Khromova, N. V., Kopnin, P. B., and Agapova, L. S. (2008) Clin. Oncohemat., 1, 3–11.

    Google Scholar 

  18. Carcamo, J. M., and Golde, D. W. (2006) Mutat. Res., 593, 64–79.

    PubMed  Google Scholar 

  19. Skulachev, V. P. (1996) FEBS Lett., 397, 7–10.

    Article  CAS  PubMed  Google Scholar 

  20. Skulachev, V. P. (1996) Quart. Rev. Biophys., 29, 169–202.

    Article  CAS  Google Scholar 

  21. Skulachev, V. P. (2003) in Topics in Current Genetics, Vol. 3 (Nystrom, T., and Osiewac, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 191–238.

    Google Scholar 

  22. Zhang, D. X., and Gutterman, D. D. (2007) Am. J. Physiol. Heart Circ. Physiol., 292, H2023–2031.

    Article  CAS  PubMed  Google Scholar 

  23. Scherz-Shouval, R., and Elazar, Z. (2007) Trends Cell Biol., 17, 422–427.

    Article  CAS  PubMed  Google Scholar 

  24. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Yu., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.

    Article  CAS  Google Scholar 

  25. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. V., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasileva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.

    Article  CAS  Google Scholar 

  26. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Yu., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Yu. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Schipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  27. Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Samoylova, T. A., Saprunova, V. B., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.

    Article  CAS  Google Scholar 

  28. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992) Nature, 356, 215–221.

    Article  CAS  PubMed  Google Scholar 

  29. Jacks, T., Remington, L., Williams, B. O., Schmitt, E. M., Halachmi, S., Bronson, R. T., and Weinberg, R. A. (1994) Curr. Biol., 4, 1–7.

    Article  CAS  PubMed  Google Scholar 

  30. Soussi, T. (2005) in 25 Years of p53 Research (Hainaut, P., and Wiman, K. G., eds.) Springer, Dordrecht-Berlin-Heidelberg-New York, pp. 255–292.

    Chapter  Google Scholar 

  31. Shi, H., Calvez, F. L., Olivier, M., and Hainaut, P. (2005) in 25 Years of p53 Research (Hainaut, P., and Wiman, K. G., eds.) Springer, Dordrecht-Berlin-Heidelberg-New York, pp. 293–320.

    Chapter  Google Scholar 

  32. Chumakov, P. M. (2007) Biochemistry (Moscow), 72, 1399–1421.

    Article  CAS  Google Scholar 

  33. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. (1998) Science, 282, 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  34. Kalinina, E. V., Chernov, N. N., Saprin, A. N., Kotova, Y. N., Andreev, Y. A., Solomka, V. S., and Scherbak, N. P. (2006) Biochemistry (Moscow), 71, 1200–1206.

    Article  CAS  Google Scholar 

  35. Kopnin, B. P., Stromskaya, T. P., Kondratov, R. V., Ossovskaya, V. S., Pugacheva, E. N., Rybalkina, E. Y., Khokhlova, O. A., and Chumakov, P. M. (1995) Oncol. Res., 7, 299–306.

    CAS  PubMed  Google Scholar 

  36. Huschtscha, L. I., and Holliday, R. (1983) J. Cell Sci., 63, 77–99.

    CAS  PubMed  Google Scholar 

  37. Kopnin, P. B., Kravchenko, I. V., Furalyov, V. A., Pylev, L. N., and Kopnin, B. P. (2004) Oncogene, 23, 8834–8840.

    Article  CAS  PubMed  Google Scholar 

  38. Sablina, A. A., Chumakov, P. M., and Kopnin, B. P. (2003) J. Biol. Chem., 278, 27362–27371.

    Article  CAS  PubMed  Google Scholar 

  39. Logunov, D. Y., Ilyinskaya, G. V., Cherenova, L. V., Verhovskaya, L. V., Shmarov, M. M., Chumakov, P. M., Kopnin, B. P., and Naroditsky, B. S. (2004) Gene Ther., 11, 79–84.

    Article  CAS  PubMed  Google Scholar 

  40. Hirota, K., and Semenza, G. L. (2006) Crit. Rev. Oncol. Hematol., 59, 15–26.

    Article  PubMed  Google Scholar 

  41. Bell, E. L., Klimova, T. A., Eisenbart, J., Moraes, C. T., Murphy, M. P., Budinger, G. R., and Chande, N. S. (2007) J. Cell Biol., 177, 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  42. Sherr, C. J., and Roberts, J. M. (1999) Genes Dev., 13, 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  43. Mainprize, T. G., Taylor, M. D., Rutka, J. T., and Dirks, P. B. (2001) J. Neurooncol., 51, 205–218.

    Article  CAS  PubMed  Google Scholar 

  44. Levine, A. J., Hu, W., and Feng, Z. (2006) Cell Death Differ., 13, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  45. Harms, K., Nozell, S., and Chen, X. (2004) Cell Mol. Life Sci., 61, 822–842.

    Article  CAS  PubMed  Google Scholar 

  46. Pugacheva, E. N., Roegiers, F., and Golemis, E. A. (2006) Curr. Opin. Cell Biol., 18, 507–515.

    Article  CAS  PubMed  Google Scholar 

  47. Brembeck, F. H., Rosario, M., and Birchmeier, W. (2006) Curr. Opin. Genet. Dev., 16, 51–59.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, J., Betson, M., Erasmus, J., Zeikos, K., Bailly, M., Cramer, L. P., and Braga, V. M. M. (2005) J. Cell Sci., 118, 5549–5562.

    Article  CAS  PubMed  Google Scholar 

  49. Lozano, E., Betson, M., and Braga, V. M. M. (2003) BioEssays, 25, 452–463.

    Article  CAS  PubMed  Google Scholar 

  50. Parasassi, T., Brunelli, R., Bracci-Laudiero, L., Greco, G., Gustafsson, A. C., Krasnowska, E. K., Lundeberg, J., Lundeberg, T., Pittaluga, E., Romano, M. C., and Serafino, A. (2005) Cell Death Differ., 12, 1285–1296.

    Article  CAS  PubMed  Google Scholar 

  51. Campbell, P. M., and Der, C. J. (2004) Semin. Cancer Biol., 14, 105–114.

    Article  CAS  PubMed  Google Scholar 

  52. Lee, S., and Helfman, D. M. (2004) J. Biol. Chem., 279, 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  53. DesMarais, V., Ghosh, M., Eddy, R., and Condeelis, J. (2005) J. Cell Sci., 118, 19–26.

    Article  CAS  PubMed  Google Scholar 

  54. Stavrovskaya, A. A. (2000) Biochemistry (Moscow), 65, 95–106.

    CAS  Google Scholar 

  55. Glavinas, H., Krajcsi, P., Cserepes, J., and Sarkadi, B. (2004) Curr. Drug Deliv., 1, 27–42.

    Article  CAS  PubMed  Google Scholar 

  56. Thottassery, J. V., Zambetti, G. P., Arimori, K., Schuetz, E. G., and Schuetz, J. D. (1997) Proc. Natl. Acad. Sci. USA, 94, 11037–11042.

    Article  CAS  PubMed  Google Scholar 

  57. Sampath, J., Sun, D., Kidd, V. J., Grenet, J., Gandhi, A., Shapiro, L. H., Wang, Q., Zambetti, G. P., and Schuetz, J. D. (2001) J. Biol. Chem., 276, 39359–29367.

    Article  CAS  PubMed  Google Scholar 

  58. Kabanov, A. V., Batrakova, E. V., and Alakhov, V. Y. (2002) Adv. Drug Deliv. Rev., 54, 759–779.

    Article  CAS  PubMed  Google Scholar 

  59. Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  60. Qanungo, S., Wang, M., and Nieminen, A. L. (2004) J. Biol. Chem., 279, 50455–50464.

    Article  CAS  PubMed  Google Scholar 

  61. Qanungo, S., Starke, D. W., Pai, H. V., Mieyal, J. J., and Nieminen, A. L. (2007) J. Biol. Chem., 282, 18427–18436.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Skulachev.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1622–1640.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agapova, L.S., Chernyak, B.V., Domnina, L.V. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochemistry Moscow 73, 1300–1316 (2008). https://doi.org/10.1134/S0006297908120031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908120031

Key words

Navigation