Skip to main content
Log in

Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The possibility to use agrobacterial transformation of leaf discs to produce resistance to bacterial infections in tobacco and potato plants by introduction of a single gene encoding the serine proteinase inhibitor BWI-1a (ISP) from buckwheat seeds is shown. All studied PCR-positive transgenic plants exhibited antibacterial activity in biotests. It was shown that the presence of just a single gene of serine proteinase inhibitor provides sufficient protection at least against two bacterial phytopathogens, Pseudomonas syringae pv. tomato and Clavibacter michiganensis sbsp. michiganensis. The biotest including tobacco plant infection by the white wings butterfly in the green house has also demonstrated the existence of protective effect in transgenic tobacco plants. Significant genotypic variations in the protection efficiency were found between members of different genera of the same family (potato and tobacco) as well as between different lines of the same species. Northern blot analysis of four transgenic potato lines and three tobacco lines transformed by a vector plasmid containing the ISP gene of serine proteinases BWI-1a from buckwheat seeds has shown the presence of the expected size mRNA transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6BAP:

6-benzylaminopurine

ISP :

gene encoding the serine proteinase inhibitor BWI-1a from buckwheat seeds

References

  1. Dunaevsky, Y. E., Elpidina, E. N., Vinokurov, K. S., and Belozersky, M. A. (2005) Mol. Biol. (Moscow), 39, 702–708.

    Google Scholar 

  2. Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., and Boulter, D. (1987) Nature, 330, 160–163.

    Article  CAS  Google Scholar 

  3. Boulter, D., Edwards, G. A., Gatehouse, A. M. R., Gatehouse, J. A., and Hilder, V. A. (1990) Crop Protection, 9, 351–354.

    Article  Google Scholar 

  4. Charity, J. A., Bittisnich, D., Anderson, M. A., and Higgins, T. J. V. (1999) Mol. Breeding, 5, 357–365.

    Article  CAS  Google Scholar 

  5. Marchetti, S., Delledonne, M., Fogher, C., Chiaba, C., Chiesa, F., Savazzini, F., and Giordano, A. (2000) Theor. Appl. Genet., 101, 519–526.

    Article  CAS  Google Scholar 

  6. Outchkurov, N. S., de Kogel, J. W., Wiegers, G. V., Abramson, M., and Jongsma, M. A. (2004) Plant Biotechnol. J., 2, 449–458.

    Article  Google Scholar 

  7. Vishnudasan, D., Tripati, M. N., Rao, U., and Khurana, P. (2005) Transgenic Res., 14, 665–675.

    Article  PubMed  CAS  Google Scholar 

  8. Datta, K., Baisakh, N., Maung, T., Tu, J., and Datta, S. K. (2002) Theor. Appl. Genet., 106, 1–8.

    PubMed  CAS  Google Scholar 

  9. Abdeen, A., Virgos, A., Olivella, E., Villanueva, J., Aviles, X., Gabarra, R., and Prat, S. (2005) Plant Mol. Biol., 57, 189–202.

    Article  PubMed  CAS  Google Scholar 

  10. Charity, J. A., Hughes, P., Anderson, M. A., Bittisnich, D. J., Whitecross, M., and Higgins, T. J. V. (2005) Func. Plant Biol., 32, 35–44.

    Article  CAS  Google Scholar 

  11. Marutasalam, S., Kalpana, K., Kumar, K. K., Loganathan, M., Poovannan, K., Raja, J. A., Kokiladevi, E., Samyappan, R., Sudhakar, D., and Balasubramanian, P. (2007) Plant Cell Rep., 26, 791–804.

    Article  Google Scholar 

  12. Chen, S. Ch., Liu, A. R., and Chzhou, Ts. R. (2006) Plant Physiol. (Moscow), 53, 756–763.

    Google Scholar 

  13. Quyang, B., Li, H.-Y., and Ye, Z.-B. (2003) J. Plant Physiol. Mol. Biol., 29, 179–184.

    Google Scholar 

  14. Valueva, T. A., and Mosolov, V. V. (2002) Uspekhi Biol. Khim., 42, 193–216.

    CAS  Google Scholar 

  15. Jongsma, M. A., Bakker, P. L., Peters, J., Bosch, D., and Stiekema, W. J. (1995) Proc. Natl. Acad. Sci. USA, 92, 8041–8045.

    Article  PubMed  CAS  Google Scholar 

  16. Cloutier, C., Jean, C., Fournier, M., Yelle, S., and Michaud, D. (2000) Arch. Insect Biochem. Physiol., 44, 69–81.

    Article  PubMed  CAS  Google Scholar 

  17. Wu, Y. R., Liewellyn, D., Mathews, A., and Dennis, E. S. (1997) Mol. Breeding, 3, 371–380.

    Article  CAS  Google Scholar 

  18. Bouchard, E., Cloutier, C., and Michaud, D. (2003) Mol. Ecol., 12, 2439–2446.

    Article  PubMed  CAS  Google Scholar 

  19. Girard, C., le Metayer, M., Bonade-Bottino, M., Pham-Delegue, M. H., and Jouanin, L. (1998) Insect Biochem. Mol. Biol., 28, 229–237.

    Article  PubMed  CAS  Google Scholar 

  20. Mazumdar-Leighton, S., and Broadway, R. M. (2001) Insect Biochem. Mol. Biol., 31, 645–657.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu-Salzman, K., Koiwa, H., Salzman, R. A., Shade, R. E., and Ahn, J.-E. (2003) Insect Mol. Biol., 12, 135–145.

    Article  PubMed  CAS  Google Scholar 

  22. Dunaevsky, Y. E., Gladysheva, I. P., Pavlukova, E. B., Beliakova, G. A., Gladyshev, D. P., Papisova, A. I., Larionova, N. I., and Belozersky, M. A. (1997) Physiol. Plant., 101, 483–488.

    Article  CAS  Google Scholar 

  23. Dunaevsky, Y. E., Pavlukova, E. B., Beliakova, G. A., and Belozersky, M. A. (1995) Mol. Biol. (Moscow), 28, 1258–1264.

    Google Scholar 

  24. Belozersky, M. A., Dunaevsky, Y. E., Drutsa, V. L., and Dorokhov, Y. L. (1995) Abst. 23rd FEBS Meet., Basel, Switzerland, p. 210.

    Google Scholar 

  25. Gamborg, O. L., Miller, R. A., and Ojima, K. (1968) Exp. Cell. Res., 50, 150–155.

    Article  Google Scholar 

  26. Murashige, T., and Skoog, F. (1962) Physiol. Plant., 15, 473–477.

    Article  CAS  Google Scholar 

  27. Belozersky, M. A., Dunaevsky, Y. E., Musolyamov, A. X., and Egorov, T. A. (1995) FEBS Lett., 371, 264–266.

    Article  PubMed  CAS  Google Scholar 

  28. Horsch, R. B., Fry, J. T., Hoffman, N. L., Einholtz, D., Rogers, S. G., and Fraley, R. T. (1987) Science, 227, 1229–1230.

    Google Scholar 

  29. Olhoft, P. M., and Somers, D. A. (2001) Plant Cell Rep., 20, 706–711.

    Article  CAS  Google Scholar 

  30. Edwards, S. K., Johnstone, C., and Thompson, C. (1991) Nucleic Acids Res., 19, 1349.

    Article  PubMed  CAS  Google Scholar 

  31. Maniatis, T., Fritch, E., and Sambrook, J. (1984) Molecular Cloning [Russian translation], Mir, Moscow.

    Google Scholar 

  32. Erlanger, B. F., Kokowsky, N., and Cohen, W. (1961) Arch. Biochem. Biophys., 95, 271–278.

    Article  PubMed  CAS  Google Scholar 

  33. Burger, A., Graffen, I., Engelman, J., Niermann, E., Pieper, M., Kircher, O., Gertemann, K.-H., and Eichenlaub, R. (2005) Microbiol. Res., 160, 417–427.

    Article  PubMed  CAS  Google Scholar 

  34. Jang, W. H., Kim, E. K., Lee, H. B., Chung, J. H., and De, O. J. (1996) Biotechnol. Lett., 18, 57–62.

    Article  CAS  Google Scholar 

  35. Tcherednichenko, M. Yu., Denchik, A. M., and Kuzmina, N. A. (2004) Abst. IV Conf. of Young Scientists “Biotechnology in Plant Growing, Animal Husbandry, and Veterinary”, Moscow, pp. 35–36.

  36. Terra, W. R., and Ferreira, C. (1994) Comp. Biochem. Physiol. B, 109, 1–62.

    Article  Google Scholar 

  37. Dunaevsky, Y. E., Matveeva, A. R., Fathkhullina, G. N., Beliakova, G. A., Kolomiets, T. M., Kovalenko, E. D., and Belozersky, M. A. (2008) Bioorg. Chem. (Moscow), 34, 317–321.

    Google Scholar 

  38. Dunaevsky, Y. E., Pavlukova, E. B., Beliakova, G. A., Gruban, T. N., Tsybina, T. A., and Belozersky, M. A. (1998) J. Plant Physiol., 152, 696–702.

    CAS  Google Scholar 

  39. Ambros, P. F., Matzke, A. J. M., and Matzke, M. A. (1986) EMBO J., 5, 2073–2077.

    PubMed  CAS  Google Scholar 

  40. Feldmann, K. A., Marks, D. A., Christianson, M. L., and Quatrano, R. S. A. (1989) Science, 243, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Belozersky.

Additional information

Original Russian Text © N. V. Khadeeva, E. Z. Kochieva, M. Yu. Tcherednitchenko, E. Yu. Yakovleva, K. V. Sydoruk, V. G. Bogush, Y. E. Dunaevsky, M. A. Belozersky, 2009, published in Biokhimiya, 2009, Vol. 74, No. 3, pp. 320–329.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-220, December 21, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadeeva, N.V., Kochieva, E.Z., Tcherednitchenko, M.Y. et al. Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress. Biochemistry Moscow 74, 260–267 (2009). https://doi.org/10.1134/S0006297909030031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909030031

Key words

Navigation