Skip to main content
Log in

Solid-phase assays for study of carbohydrate specificity of galectins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We have recently shown that the carbohydrate-binding pattern of galectins in cells differs from that determined in artificial (non-cellular) test-systems. To understand the observed discrepancy, we compared several test-systems differing in the mode of galectin presentation on solid phase. The most representative system was an assay where the binding of galectin (human galectins-1 and -3 were studied) to asialofetuin immobilized on solid phase was inhibited by polyacrylamide glycoconjugates, Glyc-PAA. This approach permits us to range quantitatively glycans (Glyc) by their affinity to galectin, i.e. to study both high and low affinity ligands. Our attempts to imitate the cell system by solid-phase assay were not successful. In the cell system galectin binds glycoconjugates by one carbohydrate-recognizing domain (CRD), and after that the binding to the remaining non-bound CRD is studied by means of fluorescein-labeled Glyc-PAA. In an “imitation” variant when galectins are loaded on adsorbed asialofetuin or Glyc-PAA followed by revealing of binding by the second Glyc-PAA, the interaction was not observed or glycans were ordered poorly, unlike in the inhibitory assay. When galectins were adsorbed on corresponding antibodies (when all CRDs were free for recognition by carbohydrate), a good concentration dependence was observed and patterns of specificities were similar (though not identical) for the two methods; notably, this system does not reflect the situation in the cell. Besides the above-mentioned, other variants of solid-phase analysis of galectin specificity were tested. The results elucidate the mechanism and consequence of galectin CRD cis-masking on cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

alkaline phosphatase

ASF:

asialofetuin

BSA:

bovine serum albumin

Glyc-PAA:

polyacrylamide glycoconjugate

PBA:

PBS containing 0.3% BSA, pH 7.2

PBS:

phosphate buffered saline, pH 7.2

PBS-Tw:

PBS containing 0.1% Tween-20

PO:

horseradish peroxidase

Str:

streptavidin

TBA:

TBS containing 0.2% BSA

TBS:

buffer containing 50 mM Tris-HCl and 150 mM NaCl, pH 7.5

TBS-Tw:

TBS containing 0.25% Tween-20

References

  1. Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994) J. Biol. Chem., 269, 20807–20810.

    CAS  PubMed  Google Scholar 

  2. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., and Poirier, F. (2004) Glycoconj. J., 19, 433–440.

    Article  PubMed  Google Scholar 

  3. Cooper, D. N. W., and Barondes, S. H. (1999) Glycobiology, 9, 979–984.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, F. T., and Rabinovich, G. A. (2005) Nat. Rev. Cancer, 5, 29–41.

    Article  CAS  PubMed  Google Scholar 

  5. Rabinovich, G. A., Toscano, M. A., Jackson, S. S., and Vasta, G. R. (2007) Curr. Opin. Struct. Biol., 17, 513–520.

    Article  CAS  PubMed  Google Scholar 

  6. Elola, M. T., Chiesa, M. E., Alberti, A. F., Mordoh, J., and Fink, N. E. (2005) J. Biomed. Sci., 12, 13–29.

    Article  CAS  PubMed  Google Scholar 

  7. Krzeslac, A., and Lipinska, A. (2004) Cell Mol. Biol. Lett., 9, 305–328.

    Google Scholar 

  8. Teichberg, V. I., Siliman, I., Beitsch, D. D., and Resheff, G. A. (1975) Proc. Natl. Acad. Sci. USA, 72, 1383–1387.

    Article  CAS  PubMed  Google Scholar 

  9. http://www.functionalglycomics.org

  10. Blixt, O., Head, S., Mondala, T., Scanlan, Ch., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, Ch.-Hu, and Paulson, J. C. (2004) Proc. Natl. Acad. Sci. USA, 101, 17033–17038.

    Article  CAS  PubMed  Google Scholar 

  11. Stowell, S. R., Arthur, C. M., Mehta, P., Slanina, K. A., Blixt, O., Leffler, H., Smith, D. F., and Cummings, R. D. (2008) J. Biol. Chem., 283, 10109–10123.

    Article  CAS  PubMed  Google Scholar 

  12. Lepanen, A., Stowell, S., Blixt, O., and Cummings, R. D. (2005) J. Biol. Chem., 280, 5549–5562.

    Article  Google Scholar 

  13. Stowell, S. R., Dias-Baruffi, M., Penttila, L., Renkonen, O., Nyame, A. K., Cummings, R. D. (2004) Glycobiology, 14, 157–167.

    Article  CAS  PubMed  Google Scholar 

  14. Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E. G., Yagi, F., and Kasai, K.-I. (2002) Biochim. Biophys. Acta, 1572, 232–254.

    CAS  PubMed  Google Scholar 

  15. Sorme, P., Kahl-Knutsson, B., Hufleijt, M., Nilsson, U. J., and Leffler, H. (2004) Anal. Biochem., 334, 36–47.

    Article  PubMed  Google Scholar 

  16. Cederfur, C., Salomonsson, E., Nilsson, J., Halim, A., Oberg, C. T., Larson, G., Nilsson, U. J., Leffler, H. (2008) Glycobiology, 18, 384–394.

    Article  CAS  PubMed  Google Scholar 

  17. Rapoport, E. M., Andre, S., Kurmyshkina, O. V., Pochechueva, T. V., Severov, V. V., Pazynina, G. V., Gabius, H.-J., Bovin, N. V. (2008) Glycobiology, 18, 315–324.

    Article  CAS  PubMed  Google Scholar 

  18. Bovin, N. V., Korchagina, E. Yu., Zemlyanukhina, T. V., Byramova, N. E., Galanina, O. E., Zemlyakov, A. E., Ivanov, A. E., Zubov, V. P., and Mochalova, L. V. (1993) Glycoconj. J., 10, 142–151.

    Article  CAS  PubMed  Google Scholar 

  19. Andre, S., Kaltner, H., Furuike, T., Nishimura, S., and Gabius, H.-J. (2004) Bioconj. Chem., 15, 87–98.

    Article  CAS  Google Scholar 

  20. Kopitz, J., Andre, S., von Reitzenstein, C., Versluis, K., Kaltner, H., Pieters, R. J., Wasano, K., Kuwabara, I., Liu, F.-T., Cantz, M., Heck, A. J. R., and Gabius, H.-J. (2003) Oncogene, 22, 6277–6288.

    Article  CAS  PubMed  Google Scholar 

  21. Matrosovich, M. N., Gao, P., and Kawaoka, Y. (1998) J. Virol., 72, 6373–6380.

    CAS  PubMed  Google Scholar 

  22. Collins, B. E., Blixt, O., Han, S., Duong, B., Li, H., Nathan, J. K., Bovin, N. V., and Paulson, J. C. (2006) J. Immunol., 177, 2994–3003.

    CAS  PubMed  Google Scholar 

  23. Lopez-Lucendo, M. F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K.-I., Kaltner, H., Gabius, H.-J., and Romero, A. (2004) J. Mol. Biol., 343, 957–970.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad, N., Gabius, H.-J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F., and Brewer, C. F. (2004) J. Biol. Chem., 279, 10841–10847.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, A. M., Singh, T., Wu, J. H., Lensch, M., Andre, S., Gabius, H.-J. (2006) Glycobiology, 16, 524–537.

    Article  CAS  PubMed  Google Scholar 

  26. Allen, H. J., Ahmed, H., and Matta, K. L. (1998) Glycoconj. J., 15, 691–695.

    Article  CAS  PubMed  Google Scholar 

  27. Bovin, N. V. (1996) Bioorg. Khim., 22, 643–663.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bovin.

Additional information

Original Russian Text © E. M. Rapoport, T. V. Pochechueva, O. V. Kurmyshkina, G. V. Pazynina, V. V. Severov, E. A. Gordeeva, I. M. Belyanchikov, S. Andre, H.-J. Gabius, N. V. Bovin, 2010, published in Biokhimiya, 2010, Vol. 75, No. 3, pp. 380–390.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-191, February 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, E.M., Pochechueva, T.V., Kurmyshkina, O.V. et al. Solid-phase assays for study of carbohydrate specificity of galectins. Biochemistry Moscow 75, 310–319 (2010). https://doi.org/10.1134/S0006297910030077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910030077

Key words

Navigation