Skip to main content
Log in

Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It is shown that nitrogen dioxide oxidizes thiamine to thiamine disulfide, thiochrome, and oxodihydrothiochrome (ODTch). The latter is formed during oxidation of thiochrome by nitrogen dioxide. Nitrogen dioxide was produced by incubation of nitrite with horse ferric myoglobin and human hemoglobin in the presence of hydrogen peroxide. After addition of tyrosine or phenol to aqueous solutions containing oxoferryl forms of the hemoproteins, thiamine, and nitrite, the yield of thiochrome greatly increased, whereas the yield of ODTch decreased. In the presence of high concentrations of tyrosine or phenol compounds ODTch was not formed at all. The neutral form of thiamine with the closed thiazole cycle and minor tricyclic form of thiamine do not enter the heme pocket of the protein and do not interact with the oxoferryl heme complex Fe(IV=O) or porphyrin radical. The tricyclic form of thiamine is oxidized to thiochrome by tyrosyl radicals located on the surface of the hemoprotein. The thiol form of thiamine is oxidized to thiamine disulfide by both hemoprotein tyrosyl radicals and oxoferryl heme complexes. Nitrite and also tyrosine, tyramine, and phenol readily penetrate into the heme pocket of the protein and reduce the oxyferryl complex to ferric cation. These reactions yield nitrogen dioxide as well as tyrosyl and phenoxyl radicals of tyrosine molecules and phenol compounds, respectively. Tyrosyl and phenoxyl radicals of low molecular weight compounds oxidize thiamine only to thiochrome and thiamine disulfide. The effect of oxoferryl forms of myoglobin and hemoglobin, nitrogen dioxide, and phenol on thiamine oxidative transformation as well as antioxidant properties of the hydrophobic thiamine metabolites thiochrome and ODTch are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ODTch:

oxodihydrothiochrome

T:

neutral form of thiamine with closed thiazole cycle

Tch:

thiochrome

TDP:

thiamine diphosphate

TDS:

thiamine disulfide

Tp:

tricyclic form of thiamine

TSH:

thiol form of thiamine

References

  1. Ignarro, L. J., Cirino, G., Casini, A., and Napoli, C. (1999) J. Cardiovasc. Pharmacol., 34, 879–886.

    Article  PubMed  CAS  Google Scholar 

  2. Davis, K. L., Martin, E., Turko, I. V., and Murad, F. (2001) Annu. Rev. Pharmacol. Toxicol., 41, 203–236.

    Article  PubMed  CAS  Google Scholar 

  3. Schopfer, F. J., Baker, P. R., and Freeman, B. A. (2003) Trends Biochem Sci., 28, 646–654.

    Article  PubMed  CAS  Google Scholar 

  4. Kaur, H., and Halliwell, B. (1994) FEBS Lett., 350, 9–12.

    Article  PubMed  CAS  Google Scholar 

  5. Torre, D., Ferrario, G., Speranza, F., Orani, A., Fiori, G. P., and Zeroli, C. (1996) J. Clin. Pathol., 49, 574–576.

    Article  PubMed  CAS  Google Scholar 

  6. Qury, T. D., Tatro, L., Ghio, A. J., and Piantadosi, C. A. (1995) Free Radical Res., 23, 537–547.

    Article  Google Scholar 

  7. Sampson, M. B., Ye, Y.-Z., Rosen, H., and Beckman, J. S. (1998) Arch. Biochem. Biophys., 356, 207–213.

    Article  PubMed  CAS  Google Scholar 

  8. Zweier, J., Wang, P., Samouilov, A., and Kuppusamy, P. (1995) Nature Med., 1, 804–809.

    Article  PubMed  CAS  Google Scholar 

  9. Stepuro, I. I., Chaikovskaya, N. A., Solodunov, A. A., and Artsukevich, A. N. (1997) Biochemistry (Moscow), 62, 960–966.

    CAS  Google Scholar 

  10. Gladwin, M. T., Shelhamer, J. H., Schechter, A. N., Pease-Fye, M. E., Waclawiw, M. A., Panza, J. A., Ognibene, F. P., and Cannon III, R. O. (2000) Proc. Natl. Acad. Sci. USA, 97, 11482–11487.

    Article  PubMed  CAS  Google Scholar 

  11. Modin, A., Bjorne, H., Herulf, M., Alving, K., Weitzberg, E., and Lundberg, J. O. N. (2001) Acta Physiol. Scand., 171, 9–16.

    PubMed  CAS  Google Scholar 

  12. Bryan, N. S., Fernandez, B. O., Bauer, S. M., Garcia-Saura, M. F., Milsom, A. B., Rassaf, T., Maloney, R. E., Bharti, A., Rodriguez, J., and Feelisch, M. (2005) Nat. Chem. Biol., 1, 290–297.

    Article  PubMed  CAS  Google Scholar 

  13. Li, H., Cui, H., Kundu, T. K., Alzawahra, W., and Zweier, J. L. (2008) J. Biol. Chem., 283, 17855–17863.

    Article  PubMed  CAS  Google Scholar 

  14. Nagababu, E., Ramasamy, S., Abernethy, D. R., and Rifkind, J. M. (2003) J. Biol. Chem., 278, 46349–46356.

    Article  PubMed  CAS  Google Scholar 

  15. Basu, S., Grubina, R., Huang, J., Conradie, J., Huang, Z., Jeffers, A., Jiang, A., He, X., Azarov, I., Seibert, R., Mehta, A., Patel, R., King, S. B., Hogg, N., Ghosh, A., Gladwin, M. T., and Kim-Shapiro, D. B. (2007) Nature Chem. Biol., 3, 785–794.

    Article  CAS  Google Scholar 

  16. Millar, T., Stevens, C., Benjamin, N., Eisenthal, R., Harrison, R., and Blake, D. (1998) FEBS Lett., 427, 225–228.

    Article  PubMed  CAS  Google Scholar 

  17. Castello, P., David, P., McClure, T., Crook, Z., and Poyton, R. (2006) Cell Metab., 3, 277–287.

    Article  PubMed  CAS  Google Scholar 

  18. Vanin, A., Bevers, L., Slama-Schwok, A., and van Faassen, E. (2007) Cell. Mol. Life Sci., 64, 96–103.

    Article  PubMed  CAS  Google Scholar 

  19. Duranski, M. R., Greer, J., Dejam, A., Jaganmohan, S., Hogg, N., Langston, W., Patel, R. P., Yet, S., Wang, Y., Kevil, C., Gladwin, M., and Lefer, D. (2005) J. Clin. Invest., 115, 1232–1240.

    PubMed  CAS  Google Scholar 

  20. Webb, A., Bond, R., McLean, P., Uppal, R., Benjamin, N., and Ahluwalia, A. (2004) Proc. Natl. Acad. Sci. USA, 101, 13683–13688.

    Article  PubMed  CAS  Google Scholar 

  21. Dezfulian, C., Raat, N., Shiva, S., and Gladwin, M. (2007) Cardiovasc. Res., 75, 327–338.

    Article  PubMed  CAS  Google Scholar 

  22. Klebanoff, S. J. (1993) Free Radical Biol. Med., 14, 351–360.

    Article  CAS  Google Scholar 

  23. Gunther, M. R., Sampath, V., and Caughey, W. S. (1999) Free Radical Biol. Med., 26, 1388–1395.

    Article  CAS  Google Scholar 

  24. Turner, J. J., Rice-Evans, C. A., Davies, M. J., and Newman, E. S. (1990) Biochem. Soc. Trans., 18, 1056–1059.

    PubMed  CAS  Google Scholar 

  25. Grisham, M. B., Granger, D. N., and Lefer, D. J. (1998) Free Radical Biol. Med., 25, 404–433.

    Article  CAS  Google Scholar 

  26. Augusto, O., Bonini, M. G., and Trindade, D. F. (2004) Free Radical Biol. Med., 36, 1224–1232.

    Article  CAS  Google Scholar 

  27. Everse, J., Johnson, M. C., and Marini, M. A. (1994) Methods Enzymol., 231, 547–561.

    Article  PubMed  CAS  Google Scholar 

  28. Everse, J., and Hsia, N. (1997) Free Radical Biol. Med., 6, 1075–1099.

    Article  Google Scholar 

  29. Herold, S., and Rehman, F.-J. K. (2001) J. Biol. Inorg. Chem., 6, 543–555.

    Article  PubMed  CAS  Google Scholar 

  30. Lawrence, A., Jones, C. M., Wardman, P., and Burkitt, M. J. (2003) J. Biol. Chem., 32, 29410–29419.

    Article  Google Scholar 

  31. Herold, S., and Rehman, F.-J. K. (2003) Free Radical Biol. Med., 34, 531–545.

    Article  CAS  Google Scholar 

  32. Maples, K. R., Kennedy, C. H., Jordan, S. J., and Mason, R. P. (1990) Arch. Biochem. Biophys., 277, 402–409.

    Article  PubMed  CAS  Google Scholar 

  33. Svistunenko, D. A., Patel, R. P., and Wilson, M. T. (1996) Free Radical Biol. Med., 24, 269–280.

    CAS  Google Scholar 

  34. Giulivi, C., and Cadenas, E. (1998) Free Radical Biol. Med., 24, 269–279.

    Article  CAS  Google Scholar 

  35. Gunter, M. R. (2004) Free Radical Biol. Med., 34, 1345–1354.

    Article  Google Scholar 

  36. Lardinois, O. M., and Montellano, P. R. (2001) J. Biol. Chem., 276, 23186–23191.

    Article  PubMed  CAS  Google Scholar 

  37. Giulivi, C., Hochstein, P., and Davies, K. J. (1994) Free Radical Biol. Med., 16, 123–129.

    Article  CAS  Google Scholar 

  38. Svistunenko, D. A., Patel, R. P., Voloshchenko, S. V., and Wilson, M. T. (1997) J. Biol. Chem., 272, 7114–7121.

    Article  PubMed  CAS  Google Scholar 

  39. Giulivi, C., and Davies, J. A. (1994) Methods Enzymol., 231, 490–496.

    Article  PubMed  CAS  Google Scholar 

  40. Chance, B., Sies, H., and Boveris, A. (1979) Physiol. Rev., 59, 527–605.

    PubMed  CAS  Google Scholar 

  41. Herold, S. (2004) Free Radical Biol. Med., 36, 565–579.

    Article  CAS  Google Scholar 

  42. Tanphaichitr, V. (2001) in Handbook of Vitamins (Rucker, R., and Suttie, J., eds.) Marcel Decker, N. Y., pp. 275–316.

    Google Scholar 

  43. Gibson, G. E., and Blass, J. P. (2007) Antioxid. Redox. Signal., 9, 1605–1619.

    Article  PubMed  CAS  Google Scholar 

  44. Stepuro, A. I., Piletskaya, T. P., and Stepuro, I. I. (2005) Biochemistry (Moscow), 70, 339–349.

    Article  CAS  Google Scholar 

  45. Calingasan, N. Y., Chun, W. J., Park, L. C., Uchida, K., and Gibson, G. E. (1999) J. Neuropathol., 58, 946–958.

    Article  CAS  Google Scholar 

  46. Matsushita, H., Takeuchi, Y., and Kosaka, K. (2000) Acta Histochem. Cytochem., 33, 67–72.

    Article  Google Scholar 

  47. Stepuro, A. I., Adamchuk, R. I., Oparin, A. Yu., and Stepuro, I. I. (2008) Biochemistry (Moscow), 73, 1031–1041.

    Article  CAS  Google Scholar 

  48. Stsiapura, V., and Stepuro, I. (2010) in Handbook of Free Radicals, Nova Science Publishers, pp. 319–376.

  49. Stepuro, I. I. (2005) Prostaglandins, Leukotrienes and Essential Fatty Acids, 72, 115–127.

    Article  CAS  Google Scholar 

  50. Stepuro, A. I., Adamchuk, R. I., and Stepuro, I. I. (2006) Biochim. Biophys. Acta, 14, 236–237.

    Google Scholar 

  51. Benesch, R., Benesch, E., Renthal, R., and Maeda, N. (1972) Biochemistry, 11, 3576–3582.

    Article  PubMed  CAS  Google Scholar 

  52. Van Kampen, E. J., and Zijlstra, W. G. (1983) Adv. Clin. Chem., 23, 199–257.

    Article  PubMed  Google Scholar 

  53. Antonini, E., and Brunori, M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, North–Holland, Amsterdam, 436 p.

  54. Fenwick, C. W., English, A. M., and Wishart, J. F. (1997) J. Am. Chem. Soc., 119, 4758–4764.

    Article  CAS  Google Scholar 

  55. Ostdal, H., Daneshvar, B., and Skibsted, L. H. (1996) Free Radical Res., 24, 429–438.

    Article  CAS  Google Scholar 

  56. Bayse, G. S., Michaels, A. W., and Morrison, M. (1972) Biochim. Biophys. Acta, 284, 34–42.

    PubMed  CAS  Google Scholar 

  57. Anderson, S. O. (1966) Acta Physiol. Scand. Suppl., 263, 1–81.

    PubMed  CAS  Google Scholar 

  58. Stern, E., and Timmons, K. (1974) Electron Absorption Spectroscopy in Organic Chemistry [Russian translation], Mir, Moscow, 296 p.

  59. Lacovich, J. (1986) The Basics of Fluorescence Spectroscopy [Russian translation], Mir, Moscow, 488 p.

  60. Oparin, D. A., Stepuro, I. I., and Kondakov, V. V. (1985) Khim. Prirod. Soedin., 5, 724–725.

    Google Scholar 

  61. Williams, T. R., Winfeld, S. A., and Miller, J. N. (1983) Analyst, 108, 1067.

    Article  CAS  Google Scholar 

  62. Jones G., II, Jackson, W. R., Choi, C. Y., and Bergmark, W. R. (1985) J. Phys. Chem., 89, 294–300.

    Article  CAS  Google Scholar 

  63. Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Uversky, V. N., Kuznetsova, I. M., and Turoverov, K. K. (2008) J. Phys. Chem. B, 112, 15893–15902.

    Article  PubMed  CAS  Google Scholar 

  64. Stubbe, J., and van der Donk, W. (1998) Chem. Rev., 98, 705–763.

    Article  PubMed  CAS  Google Scholar 

  65. Goodin, D. B., Mauk, A. G., and Smith, M. (1987) J. Biol. Chem., 262, 7719–7724.

    PubMed  CAS  Google Scholar 

  66. Davies, M. J., and Dean, R. T. (1997) Radical-Mediated Protein Oxidation: from Chemistry to Medicine, Oxford University, Oxford, 443 p.

  67. Schoneich, C. (2002) Arch. Biochem. Biophys., 397, 370–376.

    Article  PubMed  Google Scholar 

  68. Zhahg, H., Andrekopoulos, C., Joseph, J., Chandran, K., Karoui, H., Crow, J. P., and Kalyanaraman, K. (2003) J. Biol. Chem., 278, 24078–24089.

    Article  Google Scholar 

  69. Trujillo, M., Naviliat, M., Alvarez, M. N., Peluffo, G., and Radi, R. (2000) Analysis, 28, 518–526.

    Article  CAS  Google Scholar 

  70. George, P., and Irvine, D. H. (1952) Biochem. J., 52, 511–517.

    PubMed  CAS  Google Scholar 

  71. Witting, P. K., Douglas, D. J., and Mauk, A. G. (2000) J. Biol. Chem., 275, 20391–20398.

    Article  PubMed  CAS  Google Scholar 

  72. Witting, P. K., and Mauk, A. G. (2001) J. Biol. Chem., 276, 16540–16547.

    Article  PubMed  CAS  Google Scholar 

  73. Vivekananthan, D. P., Penn, M. S., Sapp, S. K., and Hsu, A. (2003) Lancet, 361, 2017–2023.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Stepuro.

Additional information

Original Russian Text © I. I. Stepuro, A. Yu. Oparin, V. I. Stsiapura, S. A. Maskevich, V. Yu. Titov, 2012, published in Biokhimiya, 2012, Vol. 77, No. 1, pp. 53–70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepuro, I.I., Oparin, A.Y., Stsiapura, V.I. et al. Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide. Biochemistry Moscow 77, 41–55 (2012). https://doi.org/10.1134/S0006297912010051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912010051

Key words

Navigation