Skip to main content
Log in

Molecular mechanisms of neuroplasticity: An expanding universe

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different “hot points” in the research area of biochemical mechanisms supporting neuroplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. James, W. (1890) Chap. IV, Habits, The Principles of Psychology, Henry Holt and Company, New York, pp. 104–127.

    Chapter  Google Scholar 

  2. Konorski, J. (1968) Conditioned Reflexes and Neuron Organization, Facsimile reprint of the 1948, Cambridge Biological Studies Series, Cambridge University Press, p.89.

    Google Scholar 

  3. Shaw, C. A., Lanius, R. A., and Van den Doel, K. (1994) The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Res. Brain Res. Rev., 19, 241–263.

    Article  CAS  PubMed  Google Scholar 

  4. Woolfrey, K. M., and Dell’Acqua, M. L. (2015) Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity, J. Biol. Chem., 290, 28604–28612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gulyaeva, N. V. (2003) Non-apoptotic functions of caspase-3 in nervous tissue, Biochemistry (Moscow), 68, 1171–1180.

    Article  CAS  Google Scholar 

  6. Yakovlev, A. A., and Gulyaeva, N. V. (2011) Pleiotropic functions of brain proteinases: methodological considerations and search for caspase substrates, Biochemistry (Moscow), 76, 1179–1186.

    Google Scholar 

  7. Borodinova, A. A., Zuzina, A. B., and Balaban, P. M. (2017) Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity, Biochemistry (Moscow), 82, 243–256.

    Google Scholar 

  8. Rozov, A. V., Valiullina, F. F., and Bolshakov, A. P. (2017) Mechanisms of long-term synaptic plasticity in hippocampal GABAergic synapses, Biochemistry (Moscow), 82, 257–263.

    Google Scholar 

  9. McEachern, J. C., and Shaw, C. A. (1999) The plasticity–pathology continuum: defining a role for the LTP phenomenon, Neurosci. Res., 58, 42–61.

    Article  CAS  Google Scholar 

  10. Balaban, P. M., and Gulyaeva, N. V. (2006) Commonality of molecular mechanisms of neuroplasticity and neuropathology: integrative approach, Ros. Fiziol. Zh. im. Sechenova, 92, 145–151.

    CAS  Google Scholar 

  11. Gulyaeva, N. V. (2016) Brain plasticity and connectopathy: mechanisms of neurological diseases and comorbidity of depression, Zh. Nevrol. Psikhiatr. im. Korsakova, 116.

    Google Scholar 

  12. Pribiag, H., and Stellwagen, D. (2014) Neuroimmune regulation of homeostatic synaptic plasticity, Neuropharmacology, 78, 13–22.

    Article  CAS  PubMed  Google Scholar 

  13. Morris, G. P., Clark, I. A., Zinn, R., and Vissel, B. (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research, Neurobiol. Learn. Mem., 105, 40–53.

    Article  CAS  PubMed  Google Scholar 

  14. Jones, R. S., and Lynch, M. A. (2015) How dependent is synaptic plasticity on microglial phenotype? Neuropharmacology, 96, 3–10.

    Article  CAS  PubMed  Google Scholar 

  15. Cattaneo, A., Macchi, F., Plazzotta, G., Veronica, B., Bocchio-Chiavetto, L., Riva, M. A., and Pariante, C. M. (2015) Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis, Front. Cell. Neurosci., 9, doi: 10.3389/fncel.2015.00040.

    Google Scholar 

  16. Levin, S. G., and Godukhin, O. V. (2017) Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain, Biochemistry (Moscow), 82, 264–274.

    Google Scholar 

  17. Onufriev, M. V., Freiman, S. V., Peregud, D. I., Kudrjashova, I. V., Tishkina, A. O., Stepanichev, M. Yu., and Gulyaeva, N. V. (2017) Neonatal proinflammatory stress induces accumulation of corticosterone and interleukin-6 in the hippocampus of juvenile rats: potential mechanism of synaptic plasticity disturbance, Biochemistry (Moscow), 82, 275–281.

    Google Scholar 

  18. Gulyaeva, N. V. (2015) Neuronal plasticity and epilepsy: modern concepts and mechanisms of epilepsy and depression comorbidity, Zh. Nevrol. Psikhiatr. im. Korsakova, 115, 148–153.

    Article  CAS  Google Scholar 

  19. Postnikova, T. Y., Zubareva, O. E., Kovalenko, A. A., Kim, K. K., Magazanik, L. G., and Zaytsev, A. V. (2017) Status epilepticus disturbs synaptic plasticity in rat hippocampus and is accompanied by changes in expression of NMDA receptors, Biochemistry (Moscow), 82, 282–290.

    Google Scholar 

  20. De Pitta, M., Brunel, N., and Volterra, A. (2015) Astrocytes: orchestrating synaptic plasticity? Neuroscience, 323, 43–61.

    Article  PubMed  Google Scholar 

  21. Ota, Y., Zanett, A. T., and Hallock, R. M. (2013) The role of astrocytes in the regulation of synaptic plasticity and memory formation, Neural Plast., 185463.

    Google Scholar 

  22. Khaspekov, L. G., and Frumkina, L. E. (2017) Molecular mechanisms mediating involvement of glial cells in plastic brain reorganization in epilepsy, Biochemistry (Moscow), 82, 380–391.

    Google Scholar 

  23. Sweatt, J. D. (2016) Neural plasticity and behavior–sixty years of conceptual advances, J. Neurochem., 139, Suppl. 2, 179–199.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg, T., Gal- Ben-Ari, S., Dieterich, D. C., Kreutz, M. R., Ziv, N. E., Gundelfinger, E. D., and Rosenblum, K. (2014) The roles of protein expression in synaptic plasticity and memory consolidation, Front. Mol. Neurosci., 7, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buffington, S. A., Huang, W., and Costa-Mattioli, M. (2014) Translational control in synaptic plasticity and cognitive dysfunction, Annu. Rev. Neurosci., 37, 17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cajigas, I. J., Will, T., and Schuman, E. M. (2010) Protein homeostasis and synaptic plasticity, EMBO J., 29, 2746–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shehata, M., and Inokuchi, K. (2014) Does autophagy work in synaptic plasticity and memory? Rev. Neurosci., 25, 543–557.

    Article  CAS  PubMed  Google Scholar 

  28. Tsilibary, E., Tzinia, A., Radenovic, L., Stamenkovic, V., Lebitko, T., Mucha, M., Pawlak, R., Frischknecht, R., and Kaczmarek, L. (2014) Neural ECM proteases in learning and synaptic plasticity, Prog. Brain Res., 214, 135–157.

    Article  PubMed  Google Scholar 

  29. Dieterich, D. C., and Kreutz, M. R. (2016) Proteomics of the synapse–a quantitative approach to neuronal plasticity, Mol. Cell. Proteomics, 15, 368–381.

    Article  CAS  PubMed  Google Scholar 

  30. Isaev, N. K., Stelmashook, E. V., and Genrikhs, E. E. (2017) Role of nerve growth factor in plastic reorganizations of forebrain cholinergic neurons, Biochemistry (Moscow), 82, 291–300.

    Google Scholar 

  31. Hayley, S., and Litteljohn, D. (2013) Neuroplasticity and the next wave of antidepressant strategies, Front. Cell. Neurosci., 7, 218.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leal, G., Comprido, D., and Duarte, C. B. (2014) BDNFinduced local protein synthesis and synaptic plasticity, Neuropharmacology, 76 (Pt. C), 639–656.

    Article  CAS  PubMed  Google Scholar 

  33. Gulyaeva, N. V. (2017) Interplay between brain BDNF and glutamatergic systems: a brief state of the evidence and review of association with pathogenesis of depression, Biochemistry (Moscow), 82, 301–307.

    Google Scholar 

  34. Popova, N. K., Ilchibaeva, T. V., and Naumenko, V. S. (2017) Neurotrophic factors (BDNF, GDNF) and the serotonergic system, Biochemistry (Moscow), 82, 308–317.

    Google Scholar 

  35. Yokoi, N., Fukata, M., and Fukata, Y. (2012) Synaptic plasticity regulated by protein–protein interactions and posttranslational modifications, Int. Rev. Cell. Mol. Biol., 297, 1–43.

    Article  CAS  PubMed  Google Scholar 

  36. Hunt, D. L., and Castillo, P. E. (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications, Curr. Opin. Neurobiol., 22, 496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rudnitskaya, E. A., Kolosova, N. G., and Stefanova, N. A. (2017) Analysis of contribution of changes in neurotrophic supplementation in development of Alzheimer’s diseaselike pathology in OXYS rats, Biochemistry (Moscow), 82, 318–329.

    Google Scholar 

  38. Cheng, A., Hou, Y., and Mattson, M. P. (2010) Mitochondria and neuroplasticity, ASN Neuro, 2, e00045.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Medvedeva, M. V., Nerobkova, L. N., Kapitsa, I. G., and Zgoda, V. G. (2017) Brain mitochondrial subproteome of Rpn10-binding proteins and its changes induced by neurotoxin MPTP and neuroprotector isatin, Biochemistry (Moscow), 82, 330–339.

    Google Scholar 

  40. Lanshakov, D. A., Drozd, U. S., and Dygalo, N. N. (2017) Optogenetic stimulation increases antiapoptotic protein Bcl-xL level in neurons, Biochemistry (Moscow), 82, 340–344.

    Google Scholar 

  41. Dygalo, N. N., Bannova, A. V., Sukhareva, E. V., Shishkina, G. T., Ayriyants, K. A., and Kalinina, T. S. (2017) Effects of a short-term lithium exposure on antiapoptotic Bcl-xL protein expression in cortex and hippocampus of rats after acute stress, Biochemistry (Moscow), 82, 345–350.

    Google Scholar 

  42. McEwen, B. S., and Chattarji, S. (2004) Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine, Eur. Neuropsychopharmacol., 14, S497–502.

    Article  CAS  PubMed  Google Scholar 

  43. Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F., Sousa, N., and Sotiropoulos, I. (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration, Neural Plast., 6391686.

    Google Scholar 

  44. Merkulov, V. M., Merkulova, T. I., and Bondar, N. P. (2017) Mechanisms of glucocorticoid resistance in brain in stress-related psychiatric disorders, Biochemistry (Moscow), 82, 351–365.

    Google Scholar 

  45. Kurina, A. U., Pronina, T. S., Dilmukhametova, L. K., Maleev, G. V., and Ugrumov, M. V. (2017) Cooperative synthesis of dopamine in rat mediobasal hypothalamus as a compensatory mechanism in hyperprolactinemia, Biochemistry (Moscow), 82, 366–372.

    Google Scholar 

  46. Bondarenko, N. S., Dilmukhametova, L. K., Kurina, A. U., Murtazina, A. R., Sapronova, A. Ya., Sysoeva, A. P., and Ugrumov, M. V. (2017) Plasticity of central and peripheral sources of noradrenaline in rats during ontogenesis, Biochemistry (Moscow), 82, 373–379.

    Google Scholar 

  47. Tomaszczyk, J. C., Green, N. L., Frasca, D., Colella, B., Turner, G. R., Christensen, B. K., and Green, R. E. (2014) Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation, Neuropsychol. Rev., 24, 409–427.

    PubMed  PubMed Central  Google Scholar 

  48. Vetrovoy, O. V., Rybnikova, E. A., and Samoilov, M. O. (2017) Cerebral mechanisms of hypoxic/ischemic postconditioning, Biochemistry (Moscow), 82, 392–400.

    Google Scholar 

  49. Colbran, R. J. (2015) Molecular mechanisms of synaptic plasticity, J. Biol. Chem., 290, 28594–28595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gulyaeva.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 3, pp. 365-371.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaeva, N.V. Molecular mechanisms of neuroplasticity: An expanding universe. Biochemistry Moscow 82, 237–242 (2017). https://doi.org/10.1134/S0006297917030014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030014

Keywords

Navigation