Skip to main content
Log in

Effect of anesthetics on efficiency of remote ischemic preconditioning

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Remote ischemic preconditioning of hind limbs (RIPC) is an effective method for preventing brain injury resulting from ischemia. However, in numerous studies RIPC has been used on the background of administered anesthetics, which also could exhibit neuroprotective properties. Therefore, investigation of the signaling pathways triggered by RIPC and the effect of anesthetics is important. In this study, we explored the effect of anesthetics (chloral hydrate and Zoletil) on the ability of RIPC to protect the brain from injury caused by ischemia and reperfusion. We found that RIPC without anesthesia resulted in statistically significant decrease in neurological deficit 24 h after ischemia, but did not affect the volume of brain injury. Administration of chloral hydrate or Zoletil one day prior to brain ischemia produced a preconditioning effect by their own, decreasing the degree of neurological deficit and lowering the volume of infarct with the use of Zoletil. The protective effects observed after RIPC with chloral hydrate or Zoletil were similar to those observed when only the respective anesthetic was used. RIPC was accompanied by significant increase in the level of brain proteins associated with the induction of ischemic tolerance such as pGSK-3β, BDNF, and HSP70. However, Zoletil did not affect the level of these proteins 24 h after injection, and chloral hydrate caused increase of only pGSK-3β. We conclude that RIPC, chloral hydrate, and Zoletil produce a significant neuroprotective effect, but the simultaneous use of anesthetics with RIPC does not enhance the degree of neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

CH:

chloral hydrate

EPO:

erythropoietin

5-HD:

sodium 5hydroxydecanoate

IPC:

ischemic preconditioning

MCA:

middle cerebral artery

MCAO:

one-side occlusion of middle cerebral artery

MRI:

magnetic resonance imaging

PMSF:

phenylmethylsulfonyl fluoride

RIPC:

remote ischemic preconditioning of hind limbs

ROS:

reactive oxygen species

SO:

sham-operated (animals)

Zol:

Zoletil

References

  1. Silachev, D. N., Plotnikov, E. Y., Pevzner, I. B., Zorova, L. D., Babenko, V. A., Zorov, S. D., Popkov, V. A., Jankauskas, S. S., Zinchenko, V. P., Sukhikh, G. T., and Zorov, D. B. (2014) The mitochondrion as a key regulator of ischaemic tolerance and injury, Heart Lung Circ., 23, 897–904.

    Article  PubMed  Google Scholar 

  2. Schott, R. J., Rohmann, S., Braun, E. R., and Schaper, W. (1990) Ischemic preconditioning reduces infarct size in swine myocardium, Circ. Res., 66, 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  3. Cochrane, J., Williams, B. T., Banerjee, A., Harken, A. H., Burke, T. J., Cairns, C. B., and Shapiro, J. I. (1999) Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat, Ren. Fail, 21, 135–145.

    Article  CAS  PubMed  Google Scholar 

  4. Mounsey, R. A., Pang, C. Y., Boyd, J. B., and Forrest, C. (1992) Augmentation of skeletal muscle survival in the latissimus dorsi porcine model using acute ischemic preconditioning, J. Otolaryngol., 21, 315–320.

    CAS  PubMed  Google Scholar 

  5. Malhotra, S., Naggar, I., Stewart, M., and Rosenbaum, D. M. (2011) Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury, Brain Res., 1386, 184–190.

    Article  CAS  PubMed  Google Scholar 

  6. Ren, C., Gao, X., Steinberg, G. K., and Zhao, H. (2008) Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning, Neuroscience, 151, 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  7. Silachev, D. N., Isaev, N. K., Pevzner, I. B., Zorova, L. D., Stelmashook, E. V., Novikova, S. V., Plotnikov, E. Y., Skulachev, V. P., and Zorov, D. B. (2012) The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk, PLoS One, 7, e51553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koch, S., Katsnelson, M., Dong, C., and Perez-Pinzon, M. (2011) Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility, Stroke, 42, 1387–1391.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hougaard, K. D., Hjort, N., Zeidler, D., Sorensen, L., Norgaard, A., Hansen, T. M., Von Weitzel-Mudersbach, P., Simonsen, C. Z., Damgaard, D., Gottrup, H., Svendsen, K., Rasmussen, P. V., Ribe, L. R., Mikkelsen, I. K., Nagenthiraja, K., Cho, T. H., Redington, A. N., Botker, H. E., Ostergaard, L., Mouridsen, K., and Andersen, G. (2014) Remote ischemic preconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial, Stroke, 45, 159–167.

    Article  CAS  PubMed  Google Scholar 

  10. Candilio, L., Malik, A., Ariti, C., Barnard, M., Di Salvo, C., Lawrence, D., Hayward, M., Yap, J., Roberts, N., Sheikh, A., Kolvekar, S., Hausenloy, D. J., and Yellon, D. M. (2015) Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomized controlled clinical trial, Heart, 101, 185–192.

    Article  PubMed  Google Scholar 

  11. Meybohm, P., Bein, B., Brosteanu, O., Cremer, J., Gruenewald, M., Stoppe, C., Coburn, M., Schaelte, G., Boning, A., Niemann, B., Roesner, J., Kletzin, F., Strouhal, U., Reyher, C., Laufenberg-Feldmann, R., Ferner, M., Brandes, I. F., Bauer, M., Stehr, S. N., Kortgen, A., Wittmann, M., Baumgarten, G., MeyerTreschan, T., Kienbaum, P., Heringlake, M., Schon, J., Sander, M., Treskatsch, S., Smul, T., Wolwender, E., Schilling, T., Fuernau, G., Hasenclever, D., and Zacharowski, K. (2015) A multicenter trial of remote ischemic preconditioning for heart surgery, N. Engl. J. Med., 373, 1397–1407.

    Article  CAS  PubMed  Google Scholar 

  12. Hausenloy, D. J., Candilio, L., Evans, R., Ariti, C., Jenkins, D. P., Kolvekar, S., Knight, R., Kunst, G., Laing, C., Nicholas, J., Pepper, J., Robertson, S., Xenou, M., Clayton, T., and Yellon, D. M. (2015) Remote ischemic preconditioning and outcomes of cardiac surgery, N. Engl. J. Med., 373, 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  13. Jones, B. O., Pepe, S., Sheeran, F. L., Donath, S., Hardy, P., Shekerdemian, L., Penny, D. J., McKenzie, I., Horton, S., Brizard, C. P., d’Udekem, Y., Konstantinov, I. E., and Cheung, M. M. (2013) Remote ischemic preconditioning in cyanosed neonates undergoing cardiopulmonary bypass: a randomized controlled trial, J. Thorac. Cardiovasc. Surg., 146, 1334–1340.

    Article  PubMed  Google Scholar 

  14. Hess, D. C., Blauenfeldt, R. A., Andersen, G., Hougaard, K. D., Hoda, M. N., Ding, Y., and Ji, X. (2015) Remote ischaemic conditioning–a new paradigm of self-protection in the brain, Nat. Rev. Neurol., 11, 698–710.

    Article  CAS  PubMed  Google Scholar 

  15. Zangrillo, A., Musu, M., Greco, T., Di Prima, A. L., Matteazzi, A., Testa, V., Nardelli, P., Febres, D., Monaco, F., Calabro, M. G., Ma, J., Finco, G., and Landoni, G. (2015) Additive effect on survival of anesthetic cardiac protection and remote ischemic preconditioning in cardiac surgery: a Bayesian network meta-analysis of randomized trials, PLoS One, 10, e0134264.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zwerus, R., and Absalom, A. (2015) Update on anesthetic neuroprotection, Curr. Opin. Anaesthesiol., 28, 424–430.

    Article  CAS  PubMed  Google Scholar 

  17. Swyers, T., Redford, D., and Larson, D. F. (2014) Volatile anesthetic-induced preconditioning, Perfusion, 29, 10–15.

    Article  CAS  PubMed  Google Scholar 

  18. Kapinya, K. J., Lowl, D., Futterer, C., Maurer, M., Waschke, K. F., Isaev, N. K., and Dirnagl, U. (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent, Stroke, 33, 1889–1898.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, H., Xiong, X., Liu, J., Gu, L., Li, F., Wan, Y., and Xu, S. (2016) Emulsified isoflurane protects against transient focal cerebral ischemia injury in rats via the PI3K/Akt signaling pathway, Anesth. Analg., 122, 1377–1384.

    Article  CAS  PubMed  Google Scholar 

  20. Bickler, P. E., and Fahlman, C. S. (2006) The inhaled anesthetic, isoflurane, enhances Ca2+-dependent survival signaling in cortical neurons and modulates MAP kinases, apoptosis proteins and transcription factors during hypoxia, Anesth. Analg., 103, 419–429.

    Article  CAS  PubMed  Google Scholar 

  21. Ye, Z., Xia, P., Cheng, Z. G., and Guo, Q. (2015) Neuroprotection induced by sevoflurane-delayed postconditioning is attributable to increased phosphorylation of mitochondrial GSK-3β through the PI3K/Akt survival pathway, J. Neurol. Sci., 348, 216–225.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J. H., Feng, D., Zhang, Y. F., Shang, Y., Wu, Y., Li, X. F., and Pei, L. (2015) Chloral hydrate preconditioning protects against ischemic stroke via upregulating annexin A1, CNS Neurosci. Ther., 21, 718–726.

    Article  CAS  PubMed  Google Scholar 

  23. Longa, E. Z., Weinstein, P. R., Carlson, S., and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats, Stroke, 20, 84–91.

    Article  CAS  PubMed  Google Scholar 

  24. Jolkkonen, J., Puurunen, K., Rantakomi, S., Harkonen, A., Haapalinna, A., and Sivenius, J. (2000) Behavioral effects of the alpha(2)-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats, Eur. J. Pharmacol., 400, 211–219.

    Article  CAS  PubMed  Google Scholar 

  25. Silachev, D. N., Uchevatkin, A. A., Pirogov, Y. A., Zorov, D. B., and Isaev, N. K. (2009) Comparative evaluation of two methods for studies of experimental focal ischemia: magnetic resonance tomography and triphenyltetrazolium detection of brain injuries, Bull. Exp. Biol. Med., 147, 269–272.

    Article  CAS  PubMed  Google Scholar 

  26. Pan, Q., Liu, Y., Zheng, J., Lu, X., Wu, S., Zhu, P., and Fu, N. (2010) Protective effect of chloral hydrate against lipopolysaccharide/D-galactosamine-induced acute lethal liver injury and zymosan-induced peritonitis in mice, Int. Immunopharmacol., 10, 967–977.

    Article  CAS  PubMed  Google Scholar 

  27. Zaugg, M., Lucchinetti, E., Spahn, D. R., Pasch, T., Garcia, C., and Schaub, M. C. (2002) Differential effects of anesthetics on mitochondrial KATP channel activity and cardiomyocyte protection, Anesthesiology, 97, 15–23.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrari, L., Turrini, G., Rostello, C., Guidi, A., Casartelli, A., Piaia, A., and Sartori, M. (2005) Evaluation of two combinations of Domitor, Zoletil 100, and Euthatal to obtain long-term nonrecovery anesthesia in Sprague–Dawley rats, Comp. Med., 55, 256–264.

    CAS  PubMed  Google Scholar 

  29. Slomka, M., Kuszczyk, M., Lazarewicz, J. W., and Makarewicz, D. (2014) NMDA receptor antagonists MK801 and memantine induce tolerance to oxygen and glucose deprivation in primary cultures of rat cerebellar granule cells, Acta Neurobiol. Exp. (Wars.), 74, 396–404.

    Google Scholar 

  30. Makarewicz, D., Sulejczak, D., Duszczyk, M., Malek, M., Slomka, M., and Lazarewicz, J. W. (2014) Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia, Folia Neuropathol., 52, 270–284.

    Article  PubMed  Google Scholar 

  31. Leducq, N., Bono, F., Sulpice, T., Vin, V., Janiak, P., Fur, G. L., O’Connor, S. E., and Herbert, J. M. (2003) Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion, J. Pharmacol. Exp. Ther., 306, 828–837.

    Article  PubMed  Google Scholar 

  32. Rivo, J., Raphael, J., Drenger, B., Berenshtein, E., Chevion, M., and Gozal, Y. (2006) Flumazenil mimics whereas midazolam abolishes ischemic preconditioning in a rabbit heart model of ischemia-reperfusion, Anesthesiology, 105, 65–71.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H. Y., McPherson, B. C., Liu, H., Baman, T. S., Rock, P., and Yao, Z. (2002) H2O2 opens mitochondrial KATP channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes, Am. J. Physiol. Heart Circ. Physiol., 282, H1395–1403.

    Article  CAS  PubMed  Google Scholar 

  34. Neumann, J. T., Thompson, J. W., Raval, A. P., Cohan, C. H., Koronowski, K. B., and Perez-Pinzon, M. A. (2015) Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection, J. Cereb. Blood Flow Metab., 35, 121–130.

    Article  CAS  PubMed  Google Scholar 

  35. Samoilov, M., Churilova, A., Gluschenko, T., and Rybnikova, E. (2014) Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats, Acta Histochem., 116, 949–957.

    Article  CAS  PubMed  Google Scholar 

  36. Schabitz, W. R., Schwab, S., Spranger, M., and Hacke, W. (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 17, 500–506.

    Article  CAS  PubMed  Google Scholar 

  37. Sun, X. C., Xian, X. H., Li, W. B., Li, L., Yan, C. Z., Li, Q. J., and Zhang, M. (2010) Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70, Exp. Neurol., 224, 347–355.

    Article  CAS  PubMed  Google Scholar 

  38. Plumier, J. C., Krueger, A. M., Currie, R. W., Kontoyiannis, D., Kollias, G., and Pagoulatos, G. N. (1997) Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury, Cell Stress Chaperones, 2, 162–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kirino, T., Tsujita, Y., and Tamura, A. (1991) Induced tolerance to ischemia in gerbil hippocampal neurons, J. Cereb. Blood Flow Metab., 11, 299–307.

    Article  CAS  PubMed  Google Scholar 

  40. Aoki, M., Abe, K., Kawagoe, J., Nakamura, S., and Kogure, K. (1993) Acceleration of HSP70 and HSC70 heat shock gene expression following transient ischemia in the preconditioned gerbil hippocampus, J. Cereb. Blood Flow Metab., 13, 781–788.

    Article  CAS  PubMed  Google Scholar 

  41. Glazier, S. S., O’Rourke, D. M., Graham, D. I., and Welsh, F. A. (1994) Induction of ischemic tolerance following brief focal ischemia in rat brain, J. Cereb. Blood Flow Metab., 14, 545–553.

    Article  CAS  PubMed  Google Scholar 

  42. Juhaszova, M., Zorov, D. B., Kim, S. H., Pepe, S., Fu, Q., Fishbein, K. W., Ziman, B. D., Wang, S., Ytrehus, K., Antos, C. L., Olson, E. N., and Sollott, S. J. (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, T., Fang, Y., Liu, S., Yu, X., Zhang, H., Liang, M., and Ding, X. (2015) Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3β, Free Radic. Biol. Med., 81, 170–182.

    Article  CAS  PubMed  Google Scholar 

  44. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77–86.

    Article  CAS  PubMed  Google Scholar 

  45. Oba, T., Yasukawa, H., Nagata, T., Kyogoku, S., Minami, T., Nishihara, M., Ohshima, H., Mawatari, K., Nohara, S., Takahashi, J., Sugi, Y., Igata, S., Iwamoto, Y., Kai, H., Matsuoka, H., Takano, M., Aoki, H., Fukumoto, Y., and Imaizumi, T. (2015) Renal nerve-mediated erythropoietin release confers cardioprotection during remote ischemic preconditioning, Circ. J., 79, 1557–1567.

    Article  PubMed  Google Scholar 

  46. Malhotra, S., Naggar, I., Stewart, M., and Rosenbaum, D. M. (2011) Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury, Brain Res., 1386, 184–190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Zorov.

Additional information

Original Russian Text © D. N. Silachev, E. A. Usatikova, I. B. Pevzner, L. D. Zorova, V. A. Babenko, M. V. Gulyaev, Yu. A. Pirogov, E. Yu. Plotnikov, D. B. Zorov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 9, pp. 1296-1308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silachev, D.N., Usatikova, E.A., Pevzner, I.B. et al. Effect of anesthetics on efficiency of remote ischemic preconditioning. Biochemistry Moscow 82, 1006–1016 (2017). https://doi.org/10.1134/S0006297917090036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917090036

Keywords

Navigation