Skip to main content
Log in

Effect of cyanide on mitochondrial membrane depolarization induced by uncouplers

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this work, it was found that the ability of common uncouplers – carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP) and 2,4-dinitrophenol (DNP) – to reduce membrane potential of isolated rat liver mitochondria was diminished in the presence of millimolar concentrations of the known cytochrome c oxidase inhibitor – cyanide. In the experiments, mitochondria were energized by addition of ATP in the presence of rotenone, inhibiting oxidation of endogenous substrates via respiratory complex I. Cyanide also reduced the uncoupling effect of FCCP and DNP on mitochondria energized by succinate in the presence of ferricyanide. Importantly, cyanide did not alter the protonophoric activity of FCCP and DNP in artificial bilayer lipid membranes. The causes of the effect of cyanide on the efficiency of protonophoric uncouplers in mitochondria are considered in the framework of the suggestion that conformational changes of membrane proteins could affect the state of lipids in their vicinity. In particular, changes in local microviscosity and vacuum permittivity could change the efficiency of protonophore-mediated translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLM:

bilayer phospholipid membranes

BSA:

bovine serum albumin

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DNP:

2,4-dinitrophenol

FCCP:

car-bonyl cyanide p-trifluoromethoxyphenylhydrazone

FCS:

fluo-rescence correlation spectroscopy

MC:

mitochondria

TMRE:

tetramethylrhodamine ethyl ester (dye)

Δψ:

mito-chondrial membrane potential

References

  1. Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100–124.

    Article  CAS  PubMed  Google Scholar 

  2. Cunha, F. M., Caldeira da Silva, C. C., Cerqueira, F. M., and Kowaltowski, A. J. (2011) Mild mitochondrial uncoupling as a therapeutic strategy, Curr. Drug Targets, 12, 783–789.

    Article  CAS  PubMed  Google Scholar 

  3. Feng, X. X., Zhu, W., Schurig-Briccio, L. A., Lindert, S., Shoen, C., Hitchings, R., Li, J. K., Wang, Y., Baig, N., Zhou, T. H., Kim, B. K., Crick, D. C., Cynamon, M., McCammon, J. A., Gennis, R. B., and Oldfield, E. (2015) Antiinfectives targeting enzymes and the proton motive force, Proc. Natl. Acad. Sci. USA, 112, 7073–7082.

    Article  Google Scholar 

  4. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mito-chondria, Eur. J. Biochem., 182, 585–592.

    Article  PubMed  Google Scholar 

  5. Starkov, A. A., Dedukhova, V. I., and Skulachev, V. P. (1994) 6-Ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Lett., 355, 305–308.

    Article  CAS  PubMed  Google Scholar 

  6. Hatefi, Y. (1975) Energy conservation and uncoupling in mitochondria, J. Supramol. Struct., 3, 201–213.

    Article  CAS  PubMed  Google Scholar 

  7. Weinbach, E. C., and Garbus, J. (1969) Mechanism of action of reagents that uncouple oxidative phosphorylation, Nature, 221, 1016–1018.

    Article  CAS  PubMed  Google Scholar 

  8. Lou, P. H., Hansen, B. S., Olsen, P. H., Tullin, S., Murphy, M. P., and Brand, M. D. (2007) Mitochondrial uncouplers with an extraordinary dynamic range, Biochem. J., 407, 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalla, V. L., Garcia-Argaez, A. N., Braga, A., Martinez-Vazquez, M., Grancara, S., Martinis, P., Agostinelli, E., and Toninello, A. (2014) An eudesman derivative from Verbesina persicifolia D. C. as a natural mild uncoupler in liver mitochondria. A new potential anti-obesity agent? Curr. Pharm. Des., 20, 253–261.

    Article  Google Scholar 

  10. Khailova, L. S., Silachev, D. N., Rokitskaya, T. I., Avetisyan, A. V., Lyamsaev, K. G., Severina, I. I., Il’yasova, T. M., Gulyaev, M. V., Dedukhova, V. I., Trendeleva, T. A., Plotnikov, E. Y., Zvyagilskaya, R. A., Chernyak, B. V., Zorov, D. B., Antonenko, Y. N., and Skulachev, V. P. (2014) A short-chain alkyl derivative of rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector, Biochim. Biophys. Acta, 1837, 1739–1747.

    Article  CAS  PubMed  Google Scholar 

  11. Antonenko, Y. N., Denisov, S. S., Khailova, L. S., Nazarov, P. A., Rokitskaya, T., Tashlitsky, V. N., Firsov, A. M., Korshunova, G. A., and Kotova, E. A. (2017) Alkyl-substituted phenylamino derivatives of 7-nitrobenz-2-oxa-1,3-diazole as uncouplers of oxidative phosphorylation and anti-bacterial agents: involvement of membrane proteins in the uncoupling action, Biochim. Biophys. Acta, 1859, 377–387.

    Article  CAS  PubMed  Google Scholar 

  12. Chefurka, W. (1960) Studies on the inhibition of the mito-chondrial ATPase by reduction of the respiratory chain, Can. J. Biochem., 38, 1195–1214.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, D., and Lardy, H. (1967) Isolation of liver or kidney mitochondria, Methods Enzymol., 10, 94–96.

    Article  CAS  Google Scholar 

  14. Akerman, K. E., and Wikstrom, M. K. (1976) Safranine as a probe of the mitochondrial membrane potential, FEBS Lett., 68, 191–197.

    Article  CAS  PubMed  Google Scholar 

  15. Perevoshchikova, I. V., Zorov, D. B., and Antonenko, Y. N. (2008) Peak intensity analysis as a method for estimation of fluorescent probe binding to artificial and natural nanoparticles: tetramethylrhodamine uptake by isolated mitochondria, Biochim. Biophys. Acta, 1778, 2182–2190.

    Article  CAS  PubMed  Google Scholar 

  16. Jung, D. W., Davis, M. H., and Brierley, G. P. (1989) Estimation of matrix pH in isolated heart mitochondria using a fluorescent probe, Anal. Biochem., 178, 348–354.

    Article  CAS  PubMed  Google Scholar 

  17. Copenhaver, J. H., and Lardy, H. A. (1952) Oxidative phosphorylations: pathways and yield in mitochondrial preparations, J. Biol. Chem., 195, 225–238.

    CAS  PubMed  Google Scholar 

  18. Colowick, S. P., Kaplan, N. O., and Ciotti, M. M. (1951) The reaction of pyridine nucleotide with cyanide and its analytical use, J. Biol. Chem., 191, 447–459.

    CAS  PubMed  Google Scholar 

  19. Andersen, O. S., Finkelstein, A., Katz, I., and Cass, A. (1976) Effect of phloretin on permeability of thin lipid membranes, J. Gen. Physiol., 67, 749–771.

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin, S., and Dilger, J. P. (1980) Transport of protons across membranes by weak acids, Physiol. Rev., 60, 825–863.

    CAS  PubMed  Google Scholar 

  21. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  22. Ting, H. P., Wilson, D. F., and Chance, B. (1970) Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes, Arch. Biochem. Biophys., 141, 141–146.

    Article  CAS  PubMed  Google Scholar 

  23. Bakker, E. P., Van den Heuvel, E. J., Wiechmann, A. H., and Van Dam, K. (1973) A comparison between the effectiveness of uncouplers of oxidative phosphorylation in mitochondria and in different artificial membrane systems, Biochim. Biophys. Acta, 292, 78–87.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, A. G. (2004) How lipids affect the activities of integral membrane proteins, Biochim. Biophys. Acta, 1666, 62–87.

    Article  CAS  PubMed  Google Scholar 

  25. Benz, R., and Mclaughlin, S. (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), Biophys. J., 41, 381–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sokolov, Y., Kozak, J. A., Kayed, R., Chanturiya, A. F., Glabe, C. F., and Hall, J. (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure, J. Gen. Physiol., 128, 637–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Antonenko.

Additional information

Original Russian Text © L. S. Khailova, T. I. Rokitskaya, E. A. Kotova, Y. N. Antonenko, 2017, published in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1489-1496.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khailova, L.S., Rokitskaya, T.I., Kotova, E.A. et al. Effect of cyanide on mitochondrial membrane depolarization induced by uncouplers. Biochemistry Moscow 82, 1140–1146 (2017). https://doi.org/10.1134/S0006297917100066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917100066

Keywords

Navigation