Skip to main content
Log in

Hevein-like antimicrobial peptides of plants

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Plant antimicrobial peptides represent one of the evolutionarily oldest innate immunity components providing the first line of host defense to pathogen attacks. This review is dedicated to a small, currently actively studied family of hevein-like peptides that can be found in various monocot and dicot plants. The review thoroughly describes all known pep- tides belonging to this family including data on their structures, functions, and antimicrobial activity. The main features allowing to assign these peptides to a separate family are given, and the specific characteristics of each peptide are described. Further, the mode of action for hevein-like peptides, their role in plant immune system, and the applications of these mol- ecules in biotechnology and medicine are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

AMP:

antimicrobial peptide

References

  1. Egorov, Ts. A., and Odintsova, T. I. (2012) Defense peptides of plant immune system, Bioorg. Khim., 38, 7–17.

    PubMed  Google Scholar 

  2. Silverstein, K. A., Moskal, W. A., Jr., Wu, H. C., Underwood, B. A., Graham, M. A., Town, C. D., and VandenBosch, K. A. (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant J., 51, 262–280.

    Article  CAS  PubMed  Google Scholar 

  3. Slavokhotova, A. A., Shelenkov, A. A., and Odintsova, T. I. (2015) Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly, Plant Mol. Biol., 89, 203–214.

    Article  CAS  PubMed  Google Scholar 

  4. Slavokhotova, A. A., Shelenkov, A. A., Korostyleva, T. V., Rogozhin, E. A., Melnikova, N. V., Kudryavtseva, A. V., and Odintsova, T. I. (2017) Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing, Biochimie, 135, 15–27.

    Article  CAS  PubMed  Google Scholar 

  5. Costa, F. T., Neto, S. M., Bloch, C., Jr., and Franco, O. L. (2007) Susceptibility of human pathogenic bacteria to antimicrobial peptides from sesame kernels, Curr. Microbiol., 55, 162–166.

    Article  CAS  PubMed  Google Scholar 

  6. Oard, S. V., and Enright, F. M. (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi, Plant Cell Rep., 25, 561–572.

    Article  CAS  PubMed  Google Scholar 

  7. Loeza-Angeles, H., Sagrero-Cisneros, E., Lara-Zarate, L., Villagomez-Gomez, E., Lopez-Meza, J. E., and Ochoa-Zarzosa, A. (2008) Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity, Biotechnol. Lett., 30, 1713–1719.

    Article  CAS  PubMed  Google Scholar 

  8. Tam, J. P., Wang, S., Wong, K. H., and Tan, W. L. (2015) Antimicrobial peptides from plants, Pharmaceuticals (Basel), 8, 711–757.

    Article  CAS  Google Scholar 

  9. Beintema, J. J. (1994) Structural features of plant chitinases and chitin-binding proteins, FEBS Lett., 350, 159–163.

    Article  CAS  PubMed  Google Scholar 

  10. Iseli, B., Boller, T., and Neuhaus, J. M. (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity, Plant Physiol., 103, 221–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Archer, B. L. (1960) The proteins of Hevea brasiliensis latex. 4.Isolation and characterization of crystalline hevein, Biochem. J., 75, 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walujono, K., Scholma, R. A., Beintema, J. J., Mariono, A., and Hahn, A. M. (1975) Amino acid sequence of hevein, Proc. Int. Rubber Conference, Kuala Lumpur, Vol. 2, pp. 518–531.

    Google Scholar 

  13. Chapot, M. P., Peumans, W. J., and Strosberg, A. D. (1986) Extensive homologies between lectins from non-leguminous plants, FEBS Lett., 195, 231–234.

    Article  CAS  Google Scholar 

  14. Peumans, W. J., De Ley, M., and Broekaert, W. F. (1983) An unusual lectin from stinging nettle (Urtica dioica) rhizomes, FEBS Lett., 177, 99–103.

    Article  Google Scholar 

  15. Broekaert, W. F., Vanparijs, J., Leyns, F., Joos, H., and Peumans, W. J. (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties, Science, 245, 1100–1102.

    Article  CAS  PubMed  Google Scholar 

  16. Van Parijs, J., Broekaert, W. F., Goldstein, I. J., and Peumans, W. J. (1991) Hevein–an antifungal protein from rubber-tree (Hevea brasiliensis) latex, Planta, 183, 258–264.

    Article  PubMed  Google Scholar 

  17. Broekaert, I., Lee, H. I., Kush, A., Chua, N. H., and Raikhel, N. (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis), Proc. Natl. Acad. Sci. USA, 87, 7633–7637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, H. I., Broekaert, W. F., and Raikhel, N. V. (1991) Co-and post-translational processing of the hevein preproprotein of latex of the rubber tree (Hevea brasiliensis), J. Biol. Chem., 266, 15944–15948.

    CAS  PubMed  Google Scholar 

  19. Soedjanaatmadja, U. M., Hofsteenge, J., Jeronimus-Stratingh, C. M., Bruins, A. P., and Beintema, J. J. (1994) Demonstration by mass spectrometry that pseudo-hevein and hevein have ragged C-terminal sequences, Biochim. Biophys. Acta, 1209, 144–148.

    Article  CAS  PubMed  Google Scholar 

  20. Gidrol, X., Chrestin, H., Tan, H. L., and Kush, A. (1994) Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex, J. Biol. Chem., 269, 9278–9283.

    CAS  PubMed  Google Scholar 

  21. Pujade-Renaud, V., Sanier, C., Cambillau, L., Pappusamy, A., Jones, H., Ruengsri, N., Tharreau, D., Chrestin, H., Montoro, P., and Narangajavana, J. (2005) Molecular characterization of new members of the Hevea brasiliensis hevein multigene family and analysis of their promoter region in rice, Biochim. Biophys. Acta, 1727, 151–161.

    Article  CAS  PubMed  Google Scholar 

  22. Andersen, N. H., Cao, B., Rodriguezromero, A., and Arreguin, B. (1993) Hevein-NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif, Biochemistry, 32, 1407–1422.

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez, A., Tablero, M., Barragan, B., Lara, P., Rangel, M., Arreguin, B., Possani, L., and Sorianogarcia, M. (1986) Crystallization of hevein–a protein from latex of Hevea brasiliensis (rubber tree), J. Crystal Growth, 76, 710–714.

    Article  CAS  Google Scholar 

  24. Asensio, J. L., Canada, F. J., Siebert, H. C., Laynez, J., Poveda, A., Nieto, P. M., Soedjanaamadja, U. M., Gabius, H. J., and Jimenez-Barbero, J. (2000) Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains, Chem. Biol., 7, 529–543.

    Article  CAS  PubMed  Google Scholar 

  25. Colombo, G., Meli, M., Canada, J., Asensio, J. L., and Jimenez-Barbero, J. (2004) Toward the understanding of the structure and dynamics of protein–carbohydrate interactions: molecular dynamics studies of the complexes between hevein and oligosaccharidic ligands, Carbohydr. Res., 339, 985–994.

    Article  CAS  PubMed  Google Scholar 

  26. Aboitiz, N., Vila-Perello, M., Groves, P., Asensio, J. L., Andreu, D., Canada, F. J., and Jimenez-Barbero, J. (2004) NMR and modeling studies of protein–carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides, Chembiochem, 5, 1245–1255.

    Article  CAS  PubMed  Google Scholar 

  27. Mareska, V., Tvaroska, I., Kralova, B., and Spiwok, V. (2015) Molecular simulations of hevein/(GlcNAc)(3) complex with weakened OH/O and CH/pi hydrogen bonds: implications for their role in complex stabilization, Carbohydr. Res., 408, 1–7.

    Article  CAS  PubMed  Google Scholar 

  28. Chavez, M. I., Vila-Perello, M., Canada, F. J., Andreu, D., and Jimenez-Barbero, J. (2010) Effect of a serine-to-aspartate replacement on the recognition of chitin oligosaccharides by truncated hevein. A 3D view by using NMR, Carbohydr. Res., 345, 1461–1468.

    Article  CAS  PubMed  Google Scholar 

  29. Ownby, D. R. (2002) A history of latex allergy, J. Allergy Clin. Immunol., 110, S27–32.

    Article  PubMed  Google Scholar 

  30. Bousquet, J., Flahault, A., Vandenplas, O., Ameille, J., Duron, J. J., Pecquet, C., Chevrie, K., and Annesi-Maesano, I. (2006) Natural rubber latex allergy among health care workers: a systematic review of the evidence, J. Allergy Clin. Immunol., 118, 447–454.

    Article  CAS  PubMed  Google Scholar 

  31. Radauer, C., Adhami, F., Furtler, I., Wagner, S., Allwardt, D., Scala, E., Ebner, C., Hafner, C., Hemmer, W., Mari, A., and Breiteneder, H. (2011) Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy, Mol. Immunol., 48, 600–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Z., Duser, M., Flagge, A., Maryska, S., Sander, I., Raulf-Heimsoth, M., and Baur, X. (2000) Identification and characterization of cross-reactive natural rubber latex and Ficus benjamina allergens, Int. Arch. Allergy Immunol., 123, 291–298.

    Article  CAS  PubMed  Google Scholar 

  33. Alenius, H., Kalkkinen, N., Lukka, M., Reunala, T., Turjanmaa, K., Makinen-Kiljunen, S., Yip, E., and Palosuo, T. (1995) Prohevein from the rubber tree (Hevea brasiliensis) is a major latex allergen, Clin. Exp. Allergy, 25, 659–665.

    Article  CAS  PubMed  Google Scholar 

  34. Blanco, C. (2003) Latex-fruit syndrome, Curr. Allergy Asthma Rep., 3, 47–53.

    Article  PubMed  Google Scholar 

  35. Wagner, S., and Breiteneder, H. (2002) The latex-fruit syndrome, Biochem. Soc. Trans., 30, 935–940.

    Article  CAS  PubMed  Google Scholar 

  36. Barre, A., Culerrier, R., Granier, C., Selman, L., Peumans, W. J., Van Damme, E. J., Bienvenu, F., Bienvenu, J., and Rouge, P. (2009) Mapping of IgE-binding epitopes on the major latex allergen Hev b2 and the cross-reacting 1,3-beta-glucanase fruit allergens as a molecular basis for the latex-fruit syndrome, Mol. Immunol., 46, 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  37. Ganglberger, E., Radauer, C., Wagner, S., Riordain, G., Beezhold, D. H., Brehler, R., Niggemann, B., Scheiner, O., Jensen-Jarolim, E., and Breiteneder, H. (2001) Hev b8, the Hevea brasiliensis latex profilin, is a cross-reactive allergen of latex, plant foods and pollen, Int. Arch. Allergy. Immunol., 125, 216–227.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, M. H., Raulf-Heimsoth, M., and Posch, A. (2002) Evaluation of patatin as a major cross-reactive allergen in latex-induced potato allergy, Ann. Allergy Asthma Immunol., 89, 613–618.

    Article  CAS  PubMed  Google Scholar 

  39. Beezhold, D. H., Hickey, V. L., Kostyal, D. A., Puhl, H., Zuidmeer, L., Van Ree, R., and Sussman, G. L. (2003) Lipid transfer protein from Hevea brasiliensis (Hev b12), a cross-reactive latex protein, Ann. Allergy Asthma Immunol., 90, 439–445.

    Article  CAS  PubMed  Google Scholar 

  40. Ferreira, F., Wallner, M., Breiteneder, H., Hartl, A., Thalhamer, J., and Ebner, C. (2002) Genetic engineering of allergens: future therapeutic products, Int. Arch. Allergy Immunol., 128, 171–178.

    Article  CAS  PubMed  Google Scholar 

  41. Banerjee, B., Wang, X., Kelly, K. J., Fink, J. N., Sussman, G. L., and Kurup, V. P. (1997) IgE from latex-allergic patients binds to cloned and expressed B cell epitopes of prohevein, J. Immunol., 159, 5724–5732.

    CAS  PubMed  Google Scholar 

  42. Beezhold, D. H., Kostyal, D. A., and Sussman, G. L. (1997) IgE epitope analysis of the hevein preprotein; a major latex allergen, Clin. Exp. Immunol., 108, 114–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Drew, A. C., Eusebius, N. P., Kenins, L., De Silva, H. D., Suphioglu, C., Rolland, J. M., and O’Hehir, R. E. (2004) Hypoallergenic variants of the major latex allergen Hev b6.01 retaining human T lymphocyte reactivity, J. Immunol., 173, 5872–5879.

    Article  CAS  PubMed  Google Scholar 

  44. Karisola, P., Mikkola, J., Kalkkinen, N., Airenne, K. J., Laitinen, O. H., Repo, S., Pentikainen, O. T., Reunala, T., Turjanmaa, K., Johnson, M. S., Palosuo, T., Kulomaa, M. S., and Alenius, H. (2004) Construction of hevein (Hev b6.02) with reduced allergenicity for immunotherapy of latex allergy by comutation of six amino acid residues on the conformational IgE epitopes, J. Immunol., 172, 2621–2628.

    Article  CAS  PubMed  Google Scholar 

  45. Reyes-Lopez, C. A., Hernandez-Santoyo, A., Pedraza-Escalona, M., Mendoza, G., Hernandez-Arana, A., and Rodriguez-Romero, A. (2004) Insights into a conformational epitope of Hev b6.02 (hevein), Biochem. Biophys. Res. Commun., 314, 123–130.

    Article  CAS  PubMed  Google Scholar 

  46. Reyes-Lopez, C. A., Pedraza-Escalona, M., Mendoza, G., Hernandez-Santoyo, A., and Rodriguez-Romero, A. (2006) A single amino acid substitution on the surface of a natural hevein isoform (Hev b6.0202), confers different IgE recognition, FEBS Lett., 580, 2483–2487.

    Article  CAS  PubMed  Google Scholar 

  47. Pedraza-Escalona, M., Becerril-Lujan, B., Agundis, C., Dominguez-Ramirez, L., Pereyra, A., Riano-Umbarila, L., and Rodriguez-Romero, A. (2009) Analysis of B-cell epitopes from the allergen Hev b6.02 revealed by using blocking antibodies, Mol. Immunol., 46, 668–676.

    Article  CAS  PubMed  Google Scholar 

  48. Koo, J. C., Lee, S. Y., Chun, H. J., Cheong, Y. H., Choi, J. S., Kawabata, S., Miyagi, M., Tsunasawa, S., Ha, K. S., Bae, D. W., Han, C. D., Lee, B. L., and Cho, M. J. (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity, Biochim. Biophys. Acta, 1382, 80–90.

    Article  CAS  PubMed  Google Scholar 

  49. Fujimura, M., Minami, Y., Watanabe, K., and Tadera, K. (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.), Biosci. Biotechnol. Biochem., 67, 1636–1642.

    Article  CAS  PubMed  Google Scholar 

  50. Li, S. S., and Claeson, P. (2003) Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds, Phytochemistry, 63, 249–255.

    Article  CAS  PubMed  Google Scholar 

  51. Broekaert, W. F., Marien, W., Terras, F. R., De Bolle, M. F., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S. B., Vanderleyden, J., et al. (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins, Biochemistry, 31, 4308–4314.

    Article  CAS  PubMed  Google Scholar 

  52. Rivillas-Acevedo, L. A., and Soriano-Garcia, M. (2007) Isolation and biochemical characterization of an antifungal peptide from Amaranthus hypochondriacus seeds, J. Agric. Food Chem., 55, 10156–10161.

    Article  CAS  PubMed  Google Scholar 

  53. Lipkin, A., Anisimova, V., Nikonorova, A., Babakov, A., Krause, E., Bienert, M., Grishin, E., and Egorov, T. (2005) An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds, Phytochemistry, 66, 2426–2431.

    Article  CAS  PubMed  Google Scholar 

  54. Kini, S. G., Nguyen, P. Q., Weissbach, S., Mallagaray, A., Shin, J., Yoon, H. S., and Tam, J. P. (2015) Studies on the chitin binding property of novel cysteine-rich peptides from Alternanthera sessilis, Biochemistry, 54, 6639–6649.

    Article  CAS  PubMed  Google Scholar 

  55. De Bolle, M. F., David, K. M., Rees, S. B., Vanderleyden, J., Cammue, B. P., and Broekaert, W. F. (1993) Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus, Plant. Mol. Biol., 22, 1187–1190.

    Article  PubMed  Google Scholar 

  56. Nielsen, K. K., Nielsen, J. E., Madrid, S. M., and Mikkelsen, J. D. (1997) Characterization of a new antifungal chitin-binding peptide from sugar beet leaves, Plant Physiol., 113, 83–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, X., Xie, W., and Gong, Z. (2000) Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba, FEBS Lett., 478, 123–126.

    Article  CAS  PubMed  Google Scholar 

  58. Rogozhin, E. A., Slezina, M. P., Slavokhotova, A. A., Istomina, E. A., Korostyleva, T. V., Smirnov, A. N., Grishin, E. V., Egorov, T. A., and Odintsova, T. I. (2015) A novel antifungal peptide from leaves of the weed Stellaria media L., Biochimie, 116, 125–132.

    Article  CAS  PubMed  Google Scholar 

  59. Slavokhotova, A. A., Shelenkov, A. A., Korostyleva, T. V., Rogozhin, E. A., Melnikova, N. V., Kudryavtseva, A. V., and Odintsova, T. I. (2017) Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing, Biochimie, 135, 15–27.

    Article  CAS  PubMed  Google Scholar 

  60. Shukurov, R. R., Voblikova, V. D., Nikonorova, A. K., Komakhin, R. A., Komakhina, V. V., Egorov, T. A., Grishin, E. V., and Babakov, A. V. (2011) Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens, Transgenic Res., 21, 313–325.

    Article  Google Scholar 

  61. Martins, J. C., Maes, D., Loris, R., Pepermans, H. A., Wyns, L., Willem, R., and Verheyden, P. (1996) H-NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus, J. Mol. Biol., 258, 322–333.

    Article  CAS  PubMed  Google Scholar 

  62. Huang, R. H., Xiang, Y., Liu, X. Z., Zhang, Y., Hu, Z., and Wang, D. C. (2002) Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv., FEBS Lett., 521, 87–90.

    Article  CAS  PubMed  Google Scholar 

  63. Huang, R. H., Xiang, Y., Tu, G. Z., Zhang, Y., and Wang, D. C. (2004) Solution structure of Eucommia antifungal peptide: a novel structural model distinct with a five-disulfide motif, Biochemistry, 43, 6005–6012.

    Article  CAS  PubMed  Google Scholar 

  64. Xiang, Y., Huang, R. H., Liu, X. Z., Zhang, Y., and Wang, D. C. (2004) Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides Oliver at an atomic resolution, J. Struct. Biol., 148, 86–97.

    Article  CAS  PubMed  Google Scholar 

  65. Van den Bergh, K. P., Proost, P., Van Damme, J., Coosemans, J., Van Damme, E. J., and Peumans, W. J. (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.), FEBS Lett., 530, 181–185.

    Article  PubMed  Google Scholar 

  66. Van den Bergh, K. P., Rouge, P., Proost, P., Coosemans, J., Krouglova, T., Engelborghs, Y., Peumans, W. J., and Van Damme, E. J. (2004) Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.), Planta, 219, 221–232.

    Article  PubMed  Google Scholar 

  67. Odintsova, T. I., Vassilevski, A. A., Slavokhotova, A. A., Musolyamov, A. K., Finkina, E. I., Khadeeva, N. V., Rogozhin, E. A., Korostyleva, T. V., Pukhalsky, V. A., Grishin, E. V., and Egorov, T. A. (2009) A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif, FEBS J., 276, 4266–4275.

    Article  CAS  PubMed  Google Scholar 

  68. Utkina, L. L., Zhabon, E. O., Slavokhotova, A. A., Rogozhin, E. A., Shiian, A. N., Grishin, E. V., Egorov, Ts. A., Odintsova, T. I., and Pukhal’skii, V. A. (2010) Heterologous expression of a synthetic gene encoding a novel hevein-type antimicrobial peptide of Leymus arenarius in Escherichia coli cells, Genetika, 46, 1645–1651.

    CAS  PubMed  Google Scholar 

  69. Dubovskii, P. V., Vassilevski, A. A., Slavokhotova, A. A., Odintsova, T. I., Grishin, E. V., Egorov, T. A., and Arseniev, A. S. (2011) Solution structure of a defense peptide from wheat with a 10-cysteine motif, Biochem. Biophys. Res. Commun., 411, 14–18.

    Article  CAS  PubMed  Google Scholar 

  70. Andreev, Y. A., Korostyleva, T. V., Slavokhotova, A. A., Rogozhin, E. A., Utkina, L. L., Vassilevski, A. A., Grishin, E. V., Egorov, T. A., and Odintsova, T. I. (2012) Genes encoding hevein-like defense peptides in wheat: distribution, evolution, and role in stress response, Biochimie, 94, 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  71. Muraki, M. (2002) The importance of CH/pi interactions to the function of carbohydrate binding proteins, Protein Pept. Lett., 9, 195–209.

    Article  CAS  PubMed  Google Scholar 

  72. Chavez, M. I., Andreu, C., Vidal, P., Aboitiz, N., Freire, F., Groves, P., Asensio, J. L., Asensio, G., Muraki, M., Canada, F. J., and Jimenez-Barbero, J. (2005) On the importance of carbohydrate–aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues, Chemistry, 11, 7060–7074.

    Article  CAS  PubMed  Google Scholar 

  73. Koo, J. C., Lee, B., Young, M. E., Koo, S. C., Cooper, J. A., Baek, D., Lim, C. O., Lee, S. Y., Yun, D. J., and Cho, M. J. (2004) Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts, Plant Cell Physiol., 45, 1669–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Naumann, T. A., Wicklow, D. T., and Price, N. P. (2011) Identification of a chitinase-modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease, J. Biol. Chem., 286, 35358–35366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Naumann, T. A., and Price, N. P. (2012) Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases, Mol. Plant Pathol., 13, 1135–1139.

    Article  CAS  PubMed  Google Scholar 

  76. Caruso, C., Chilosi, G., Caporale, C., Leonardi, L., Bertini, L., Magro, P., and Buonocore, V. (1990) Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum, Plant Sci., 140, 87–97.

    Article  Google Scholar 

  77. Slavokhotova, A. A., Naumann, T. A., Price, N. P., Rogozhin, E. A., Andreev, Y. A., Vassilevski, A. A., and Odintsova, T. I. (2014) Novel mode of action of plant defense peptides–hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases, FEBS J., 281, 4754–4764.

    Article  CAS  PubMed  Google Scholar 

  78. Kanrar, S., Venkateswari, J. C., Kirti, P. B., and Chopra, V. L. (2002) Transgenic expression of hevein, the rubber tree lectin, in Indian mustard confers protection against Alternaria brassicae, Plant Sci., 162, 441–448.

    Article  CAS  Google Scholar 

  79. Lee, H. I., and Raikhel, N. V. (1995) Prohevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants, Braz. J. Med. Biol. Res., 28, 743–750.

    CAS  PubMed  Google Scholar 

  80. Montoro, P., Lagier, S., Baptiste, C., Marteaux, B., Pujade-Renaud, V., Leclercq, J., and Alemanno, L. (2008) Expression of the HEV2.1 gene promoter in transgenic Hevea brasiliensis, Plant Cell Tissue Organ Cult., 94, 55–63.

    Article  CAS  Google Scholar 

  81. Sunderasan, E. B., Badaruddin, B. E., Azharuddin, A., and Arokiaraj, P. (2012) Genetic transformation of Hevea brasiliensis with human atrial natriuretic factor, J. Rubber Res., 15, 255–264.

    CAS  Google Scholar 

  82. Sunderasan, E. S., Shuib, S. S., Badaruddin, B. E., Azharuddin, A., and Arokiaraj, P. (2010) Hevea genetic transformation for enhanced recombinant pharmaceutical production by the use of hevein promoter, in National Biotechnology Seminar, Kuala Lumpur, Malaysia.

    Google Scholar 

  83. Berthelot, K., Peruch, F., and Lecomte, S. (2016) Highlights on Hevea brasiliensis (pro)hevein proteins, Biochimie, 127, 258–270.

    Article  CAS  PubMed  Google Scholar 

  84. Koo, J. C., Chun, H. J., Park, H. C., Kim, M. C., Koo, Y. D., Koo, S. C., Ok, H. M., Park, S. J., Lee, S. H., Yun, D. J., Lim, C. O., Bahk, J. D., Lee, S. Y., and Cho, M. J. (2002) Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants, Plant Mol. Biol., 50, 441–452.

    Article  CAS  PubMed  Google Scholar 

  85. Lee, O. S., Lee, B., Park, N., Koo, J. C., Kim, Y. H., Prasad, D. T., Karigar, C., Chun, H. J., Jeong, B. R., Kim, D. H., Nam, J., Yun, J. G., Kwak, S. S., Cho, M. J., and Yun, D. J. (2003) Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum, Phytochemistry, 62, 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  86. De Bolle, M. F., Osborn, R. W., Goderis, I. J., Noe, L., Acland, D., Hart, C. A., Torrekens, S., Van Leuven, F., and Broekaert, W. F. (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco, Plant Mol. Biol., 31, 993–1008.

    Article  PubMed  Google Scholar 

  87. Liapkova, N. S., Loskutova, N. A., Maisurian, A. N., Mazin, V. V., Korableva, N. P., Platonova, T. A., Ladyzhenskaia, E. P., and Evsiunina, A. S. (2001) Isolation of genetically modified potato plant containing the gene of defensive peptide from Amaranthus, Prikl. Biokhim. Mikrobiol., 37, 349–354.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Slavokhotova.

Additional information

Original Russian Text © A. A. Slavokhotova, A. A. Shelenkov, Ya. A. Andreev, T. I. Odintsova, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 209-244.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavokhotova, A.A., Shelenkov, A.A., Andreev, Y.A. et al. Hevein-like antimicrobial peptides of plants. Biochemistry Moscow 82, 1659–1674 (2017). https://doi.org/10.1134/S0006297917130065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917130065

Keywords

Navigation