Skip to main content
Log in

Immunotropic Effects and Proposed Mechanism of Action for 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Inhibitors (Statins)

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Inhibitors of HMG-CoA reductase (statins) are the major group of lipid-lowering drugs. Along with hypocholesterolemic activity, statins exhibit anti-inflammatory and immunomodulatory properties that expand their clinical use, particularly, in the treatment of chronic inflammatory and autoimmune disorders. In this review, we critically analyze the data of statin effects on immune cells (e.g., monocytes and T cells) involved in the development of atherosclerosis and other chronic inflammatory diseases. We (i) discuss the properties of statins and routes of cell entry, as well as their major intracellular targets; (ii) evaluate the data on the effects of statins on the subset composition of circulatory monocytes, ability of monocytes to migrate to the site of inflammation (cell motility and expression of adhesion molecules and chemokine receptors), production of cytokines, matrix metalloproteinases, and reactive oxygen species by monocytes/macrophages, and antigen-presenting activity in peripheral blood monocyte-derived dendritic cells; and (iii) summarize the data on the regulation of proliferation and differentiation of various CD4+ T cell subsets (type 1/2/17 helper T cells and regulatory T cells) by statins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

cluster of differentiation

CRP:

C–reactive protein

DCs:

dendritic cells

ERK1/2:

extracellular signal–regulated kinase–1/2

FPP:

farnesyl pyrophosphate

GGPP:

geranylgeranyl pyrophosphate

GM–CSF:

granulocyte macrophage colony stimulating factor

GTPase:

guanosine triphosphate hydrolase

HLA–DR:

human leukocyte antigen–antigen D–related

HMG–CoA reductase:

3–hydroxy–3–methylglutaryl–coenzyme A reductase

ICAM–1:

intracellular adhesion molecule 1

IL:

interleukin

INF–γ:

interferon–γ

LFA–1:

lymphocyte function–associated antigen 1, integrin family of adhesion molecules

LPS:

lipopolysaccharide

Mac–1:

macrophage–1 antigen, integrin family of adhesion molecules

MAP kinase:

mitogen–activated protein kinase

MCP–1:

monocyte chemoattractant protein–1

MIP:

macrophage inflammatory protein, cytokine

MMP:

matrix metalloproteinase

mTOR:

mammalian target of rapamycin, protein kinase

PHA:

phytohemagglutinin

RANTES:

regulated on activation, normal T–cell expressed and secreted (chemokine)

TGFβ:

transforming growth factor–β

Th1/2/17:

type 1/2/17 helper T cells

TIMP:

tissue inhibitor of metalloproteinase

TLR4:

Toll–like receptor 4

TNF:

tumor necrosis factor

Treg:

regulatory T lymphocytes

VLA–4:

very late antigen–4, integrin family of adhesion molecules

References

  1. Liao, J. K. (2005) Effects of statins on 3–hydroxy–3–methylglutaryl coenzyme a reductase inhibition beyond low–density lipoprotein cholesterol, Am. J. Cardiol., 96, 24–33.

    Article  CAS  Google Scholar 

  2. Grover, H. S., Luthra, S., and Maroo, S. (2014) Are statins really wonder drugs? J. Formos. Med. Assoc., 113, 892–898.

    Article  PubMed  CAS  Google Scholar 

  3. Wennerberg, K., Rossman, K. L., and Der, C. J. (2005) The Ras superfamily at a glance, J. Cell Sci., 118, 843–846.

    Article  PubMed  CAS  Google Scholar 

  4. Pugh, S. D., MacDougall, D. A., Agarwal, S. R., Harvey, R. D., Porter, K. E., and Calaghan, S. (2014) Caveolin contributes to the modulation of basal and β–adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: a novel pleiotropic effect, PLoS One, 9, 1–15.

    Article  CAS  Google Scholar 

  5. Lin, Y. C., Lin, J. H., Chou, C. W., Chang, Y. F., Yeh, S. H., and Chen, C. C. (2008) Statins increase p21 through inhibition of histone deacetylase activity and release of promoter–associated HDAC1/2, Cancer Res., 68, 2375–2383.

    Article  PubMed  CAS  Google Scholar 

  6. Weitz–Schmidt, G., Welzenbach, K., Brinkmann, V., Kamata, T., Kallen, J., Bruns, C., Cottens, S., Takada, Y., and Hommel, U. (2001) Statins selectively inhibit leukocyte function antigen–1 by binding to a novel regulatory integrin site, Nat. Med., 7, 687–692.

    Article  PubMed  CAS  Google Scholar 

  7. Fong, C. W. (2014) Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3–hydroxy–3–methylglutaryl–CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies, Eur. J. Med. Chem., 85, 661–674.

    Article  PubMed  CAS  Google Scholar 

  8. Schachter, M. (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update, Fundam. Clin. Pharmacol., 1, 117–125.

    Article  CAS  Google Scholar 

  9. McKenney, J. M. (2003) Pharmacologic characteristics of statins, Clin. Cardiol., 26, 32–38.

    Article  Google Scholar 

  10. Konig, J., Cui, Y., Nies, A. T., and Keppler, D. (2000) A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane, Am. J. Physiol. Gastrointest. Liver Physiol., 278, 156–164.

    Article  Google Scholar 

  11. Grube, M., Kock, K., Oswald, S., Draber, K., Meissner, K., Eckel, L., Bohm, M., Felix, S. B., Vogelgesang, S., Jedlitschky, G., Siegmund, W., Warzok, R., and Kroemer, H. K. (2006) Organic anion transporting polypeptide 2B1 is a high–affinity transporter for atorvastatin and is expressed in the human heart, Clin. Pharmacol. Ther., 80, 607–620.

    Article  PubMed  CAS  Google Scholar 

  12. Knauer, M. J., Urquhart, B. L., Meyer zu Schwabedissen, H. E., Schwarz, U. I., Lemke, C. J., Leake, B. F., Kim, R. B., and Tirona, R. G. (2010) Human skeletal muscle drug transporters determine local exposure and toxicity of statins, Circ. Res., 106, 297–306.

    Article  PubMed  CAS  Google Scholar 

  13. Rodrigues, A. C., Perin, P. M., Purim, S. G., Silbiger, V. N., Genvigir, F. D., Willrich, M. A., Arazi, S. S., Luchessi, A. D., Hirata, M. H., Bernik, M. M., Dorea, E. L., Santos, C., Faludi, A. A., Bertolami, M. C., Salas, A., Freire, A., Lareu, M. V., Phillips, C., Porras–Hurtado, L., Fondevila, M., Carracedo, A., and Hirata, R. D. (2011) Pharmacogenetics of OATP transporters reveals that SLCO1B1 c.388A>G variant is determinant of increased atorvastatin response, Intern. J. Mol. Sci., 12, 5815–5827.

    Article  CAS  Google Scholar 

  14. Kalliokoski, A., and Niemi, M. (2009) Impact of OATP transporters on pharmacokinetics, British J. Pharm., 158, 693–705.

    Article  CAS  Google Scholar 

  15. Niemi, M. (2007) Role of OATP transporters in the disposition of drugs, Pharmacogenomics, 8, 787–802.

    Article  PubMed  CAS  Google Scholar 

  16. Neuvonen, P. J., Backman, J. T., and Niemi, M. (2008) Pharmacokinetic comparison of the potential over–the–counter statins simvastatin, lovastatin, fluvastatin and pravastatin, Clin. Pharmacokinet., 47, 463–474.

    Article  PubMed  CAS  Google Scholar 

  17. Ho, R. H., Tirona, R. G., Leake, B. F., Glaeser, H., Lee, W., Lemke, C. J., Wang, Y., and Kim, R. B. (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics, Gastroenterology, 130, 1793–1806.

    Article  PubMed  CAS  Google Scholar 

  18. Fujino, H., Saito, T., Ogawa, S., and Kojima, J. (2005) Transporter–mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG–CoA reductase, J. Pharm. Pharmacol., 57, 1305–1311.

    Article  PubMed  CAS  Google Scholar 

  19. Greupink, R., Dillen, L., Monshouwer, M., Huisman, M. T., and Russel, F. G. (2011) Interaction of fluvastatin with the liver–specific Na+–dependent taurocholate co–transporting polypeptide (NTCP), Eur. J. Pharm. Sci., 44, 487–496.

    Article  PubMed  CAS  Google Scholar 

  20. Li, L., Nouraldeen, A., and Wilson, A. G. (2013) Evaluation of transporter–mediated hepatic uptake in a non–radioactive high–throughput assay: a study of kinetics, species difference and plasma protein effect, Xenobiotica, 43, 253–262.

    Article  PubMed  CAS  Google Scholar 

  21. Sarr, F. S., Guillaume, Y. C., and Andre, C. (2008) Magnesium cation effect on passive diffusion of statin molecules: molecular chromatography approach, J. Pharm. Biomed. Anal., 47, 651–657.

    Article  PubMed  CAS  Google Scholar 

  22. Hua, W. J., Fang, H. J., and Hua, W. X. (2012) Transepithelial transport of rosuvastatin and effect of ursolic acid on its transport in Caco–2 monolayers, Eur. J. Drug Metab. Pharmacokinet., 37, 225–231.

    Article  PubMed  CAS  Google Scholar 

  23. Hristov, M., Schmitz, S., Nauwelaers, F., and Weber, C. (2012) A flow cytometric protocol for enumeration of endothelial progenitor cells and monocyte subsets in human blood, J. Immunol. Methods, 381, 9–13.

    Article  PubMed  CAS  Google Scholar 

  24. Rothe, G., Herr, A. S., Stohr, J., Abletshauser, C., Weidinger, G., and Schmitz, G. (1999) A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease, Atherosclerosis, 144, 251–261.

    Article  PubMed  CAS  Google Scholar 

  25. Merino, A., Buendia, P., Martin–Malo, A., Aljama, P., Ramirez, R., and Carracedo, J. (2011) Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity, J. Immunol., 186, 1809–1815.

    Article  PubMed  CAS  Google Scholar 

  26. Mukherjee, R., Kanti Barman, P., Kumar Thatoi, P., Tripathy, R., Kumar Das, B., and Ravindran, B. (2015) Non–classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous, Sci. Rep., 5, 13886.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kashiwagi, M., Imanishi, T., Tsujioka, H., Ikejima, H., Kuroi, A., Ozaki, Y., Ishibashi, K., Komukai, K., Tanimoto, T., Ino, Y., Kitabata, H., Hirata, K., and Akasaka, T. (2010) Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64–slice multidetector computed tomography in patients with stable angina pectoris, Atherosclerosis, 1, 171–176.

    Article  CAS  Google Scholar 

  28. Jaipersad, A. S., Shantsila, E., Blann, A., and Lip, G. Y. (2013) The effect of statin therapy withdrawal on monocyte subsets, Eur. J. Clin. Inv., 12, 1307–1313.

    Article  CAS  Google Scholar 

  29. Kuznetsova, G. V., Potekhina, A. V., Aref’eva, T. I., Ruleva, N. Yu., Filatova, A. Yu., Shchinova, A. M., Osokina, A. K., Noeva, E. A., Zharova, E. A., and Provatorov, S. I. (2016) Effect of atorvastatin on the blood T cell subset composition in patients with stable effort angina, Ateroskl. Dislipidem., 4, 30–39.

    Google Scholar 

  30. Imanishi, T., Ikejima, H., Tsujioka, H., Kuroi, A., Ishibashi, K., Komukai, K., Tanimoto, T., Ino, Y., Takeshita, T., and Akasaka, T. (2010) Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris, Atherosclerosis, 212, 628–635.

    Article  PubMed  CAS  Google Scholar 

  31. Coen, P. M., Flynn, M. G., Markofski, M. M., Pence, B. D., and Hannemann, R. E. (2010) Adding exercise to rosuvastatin treatment: influence on C–reactive protein, monocyte Toll–like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population, Metabolism, 59, 1775–1783.

    Article  PubMed  CAS  Google Scholar 

  32. Funderburg, N. T., Jiang, Y., Debanne, S. M., Labbato, D., Juchnowski, S., Ferrari, B., Clagett, B., Robinson, J., Lederman, M. M., and McComsey, G. A. (2015) Rosuvastatin reduces vascular inflammation and T–cell and monocyte activation in HIV–infected subjects on antiretroviral therapy, J. Acquir. Immune Defic. Syndr., 68, 396–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yang, Y., Cui, Y., and Peng, D.–Q. (2013) The role of monocyte phenotype switching in peri–procedural myocardial injury and its involvement in statin therapy, Med. Sci. Monit., 19, 1006–1012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fildes, J. E., Shaw, S. M., Mitsidou, A., Rogacev, K., Leonard, C. T., Williams, S. G., and Yonan, N. (2008) HMG–CoA reductase inhibitors deplete circulating classical and non–classical monocytes following human heart transplantation, Transpl. Immunol., 19, 152–157.

    Article  PubMed  CAS  Google Scholar 

  35. Wong, B., Lumma, W. C., Smith, A. M., Sisko, J. T., Wright, S. D., and Cai, T. Q. (2001) Statins suppress THP–1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation, J. Leukoc. Biol., 69, 959–962.

    PubMed  CAS  Google Scholar 

  36. Veillard, N. R., Braunersreuther, V., Arnaud, C., Burger, F., Pelli, G., Steffens, S., and Mach, F. (2006) Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages, Atherosclerosis, 1, 51–58.

    Article  CAS  Google Scholar 

  37. Peng, D. D., and Li, Z. L. (2008) Effect of simvastatin on monocyte CX3CR1 expression in patients with acute coronary syndrome, Nan Fang Yi Ke Da Xue Xue Bao, 28, 475–477.

    PubMed  CAS  Google Scholar 

  38. Han, K. H., Ryu, J., Hong, K. H., Ko, J., Pak, Y. K., Kim, J. B., Park, S. W., and Kim, J. J. (2005) HMG–CoA reductase inhibition reduces monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein–1–mediated monocyte recruitment in vivo, Circulation, 111, 1439–1447.

    Article  PubMed  CAS  Google Scholar 

  39. Weber, C., Erl, W., Weber, K. S., and Weber, P. C. (1997) HMG–CoA reductase inhibitors decrease CD11b expression and CD11b–dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia, J. Am. Coll. Cardiol., 5, 1212–1217.

    Article  Google Scholar 

  40. Stulc, T., Vrablik, M., Kasalova, Z., Marinov, I., Svobodova, H., and Ceska, R. (2008) Leukocyte and endothelial adhesion molecules in patients with hypercholesterolemia: the effect of atorvastatin treatment, Physiol. Res., 57, 185–194.

    PubMed  CAS  Google Scholar 

  41. Walter, T., Suselbeck, T., Borggrefe, M., Swoboda, S., Hoffmeister, H. M., and Dempfle, C. E. (2010) Effect of atorvastatin on cellular adhesion molecules on leukocytes in patients with normocholesterolemic coronary artery disease, In vivo, 24, 189–193.

    PubMed  CAS  Google Scholar 

  42. Cerda, A., Rodrigues, A. C., Alves, C., Genvigir, F. D., Fajardo, C. M., Dorea, E. L., Gusukuma, M. C., Pinto, G. A., Hirata, M. H., and Hirata, R. D. (2015) Modulation of adhesion molecules by cholesterol–lowering therapy in mononuclear cells from hypercholesterolemic patients, Cardiovasc. Ther., 33, 168–176.

    Article  PubMed  CAS  Google Scholar 

  43. Montecucco, F., Burger, F., Pelli, G., Poku, N. K., Berlier, C., Steffens, S., and Mach, F. (2009) Statins inhibit C–reactive protein–induced chemokine secretion, ICAM–1 upregulation and chemotaxis in adherent human monocytes, Rheumatology (Oxford), 3, 233–242.

    Article  CAS  Google Scholar 

  44. Ikeda, U., and Shimada, K. (1999) Statins and monocytes, Lancet, 353, 2070.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, S. S., Li, R., Qu, X., Fang, W., and Quan, Z. (2012) Atorvastatin decreases Toll–like receptor 4 expression and downstream signaling in human monocytic leukemia cells, Cell. Immunol., 279, 96–102.

    Article  PubMed  CAS  Google Scholar 

  46. Ferro, D., Parrotto, S., Basili, S., Alessandri, C., and Violi, F. (2000) Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia, J. Am. Coll. Cardiol., 36, 427–431.

    Article  PubMed  CAS  Google Scholar 

  47. Krysiak, R., and Okopien, B. (2011) The effect of ezetimibe and simvastatin on monocyte cytokine release in patients with isolated hypercholesterolemia, J. Cardiovasc. Pharmacol., 57, 505–512.

    Article  PubMed  CAS  Google Scholar 

  48. Kuijk, L. M., Beekman, J. M., Koster, J., Waterham, H. R., Frenkel, J., and Coffer, P. J. (2008) HMG–CoA reductase inhibition induces IL–1beta release through Rac1/PI3K/PKB–dependent caspase–1 activation, Blood, 112, 3563–3573.

    Article  PubMed  CAS  Google Scholar 

  49. Kuijk, L. M., Mandey, S. H., Schellens, I., Waterham, H. R., Rijkers, G. T., Coffer, P. J., and Frenkel, J. (2008) Statin synergizes with LPS to induce IL–1beta release by THP–1 cells through activation of caspase–1, Mol. Immunol., 45, 2158–2165.

    Article  PubMed  CAS  Google Scholar 

  50. Keiner, P. A., Davis, P. M., Murray, J. L., Youssef, S., Rankin, B. M., and Kowala, M. (2001) Stimulation of inflammatory responses in vitro and in vivo by lipophilic HMG–CoA reductase inhibitors, Int. Immunopharmacol., 1, 105–118.

    Article  Google Scholar 

  51. Lindholm, M. W., and Nilsson, J. (2007) Simvastatin stimulates macrophage interleukin–1beta secretion through an isoprenylation–dependent mechanism, Vascul. Pharmacol., 46, 91–96.

    Article  PubMed  CAS  Google Scholar 

  52. Bjorkhem–Bergman, L., Lindh, J. D., and Bergman, P. (2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharmacol., 72, 164–165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Monick, M. M., Powers, L. S., Butler, N. S., and Hunninghake, G. W. (2003) Inhibition of Rho family GTPases results in increased TNF–production after lipopolysaccharide exposure, J. Immunol., 171, 2625–2630.

    Article  PubMed  CAS  Google Scholar 

  54. Sun, D., and Fernandes, G. (2003) Lovastatin inhibits bone marrow–derived dendritic cell maturation and upregulates proinflammatory cytokine production, Cell. Immunol., 223, 52–62.

    Article  PubMed  CAS  Google Scholar 

  55. Lee, C. S., Shin, Y. J., Won, C., Lee, Y. S., Park, C. G., Ye, S. K., and Chung, M. H. (2009) Simvastatin acts as an inhibitor of interferon gamma–induced cycloxygenase–2 expression in human THP–1 cells, but not in murine RAW264.7 cells, Biocell, 33, 107–114.

    PubMed  CAS  Google Scholar 

  56. Leuenberger, T., Pfueller, C. F., Luessi, F., Bendix, I., Paterka, M., Prozorovski, T., Treue, D., Luenstedt, S., Herz, J., Siffrin, V., Infante–Duarte, C., Zipp, F., and Waiczies, S. (2014) Modulation of dendritic cell immunobiology via inhibition of 3–hydroxy–3–methylglutaryl–CoA (HMG–CoA) reductase, PLoS One, 11, 1–10.

    Google Scholar 

  57. Bjorkhem–Bergman, L., Lindh, J. D., and Bergman, P. (2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharmacol., 72, 164–165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Newby, A. C. (2006) Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr. Opin. Lipidol., 17, 556–561.

    Article  PubMed  CAS  Google Scholar 

  59. Loftus, I. M., Naylor, A. R., Goodall, S., Crowther, M., Jones, L., Bell, P. R., and Thompson, M. M. (2000) Increased matrix metalloproteinase–9 activity in unstable carotid plaques. A potential role in acute plaque disruption, Stroke, 31, 40–47.

    Article  PubMed  CAS  Google Scholar 

  60. Bellosta, S., Via, D., Canavesi, M., Pfister, P., Fumagalli, R., Paoletti, R., and Bernini, F. (1998) HMG–CoA reductase inhibitors reduce MMP–9 secretion by macrophages, Arterioscler. Thromb. Vasc. Biol., 18, 1671–1678.

    Article  PubMed  CAS  Google Scholar 

  61. Aikawa, M., Rabkin, E., Sugiyama, S., Voglic, S. J., Fukumoto, Y., Furukawa, Y., Shiomi, M., Schoen, F. J., and Libby, P. (2001) An HMG–CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro, Circulation, 103, 276–283.

    Article  PubMed  CAS  Google Scholar 

  62. Furman, C., Copin, C., Kandoussi, M., Davidson, R., Moreau, M., McTaggiart, F., Chapman, M. J., Fruchart, J. C., and Rouis, M. (2004) Rosuvastatin reduces MMP–7 secretion by human monocyte–derived macrophages: potential relevance to atherosclerotic plaque stability, Atherosclerosis, 174, 93–98.

    Article  PubMed  CAS  Google Scholar 

  63. Luan, Z., Chase, A. J., and Newby, A. C. (2003) Statins inhibit secretion of metalloproteinases–1,–2,–3, and –9 from vascular smooth muscle cells and macrophages, Arterioscler. Thromb. Vasc. Biol., 23, 769–775.

    Article  PubMed  CAS  Google Scholar 

  64. Mahajan, N., and Dhawan, V. (2010) Inhibition of C–reactive protein induced expression of matrix metalloproteinases by atorvastatin in THP–1 cells, Mol. Cell. Biochem., 338, 77–86.

    Article  PubMed  CAS  Google Scholar 

  65. Delbosc, S., Morena, M., Djouad, F., Ledoucen, C., Descomps, B., and Cristol, J. P. (2002) Statins, 3–hydroxy–3–methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP–1–derived monocytes, J. Cardiovasc. Pharmacol., 4, 611–617.

    Article  Google Scholar 

  66. Frostegard, J., Zhang, Y., Sun, J., Yan, K., and Liu, A. (2016) Oxidized low–density lipoprotein (OxLDL)–treated dendritic cells promote activation of T cells in human atherosclerotic plaque and blood, which is repressed by statins: microRNA let–7c is integral to the effect, J. Am. Heart Assoc., 20, 1–14.

    Google Scholar 

  67. Yilmaz, A., Reiss, C., Weng, A., Cicha, I., Stumpf, C., Steinkasserer, A., Daniel, W. G., and Garlichs, C. D. (2006) Differential effects of statins on relevant functions of human monocyte–derived dendritic cells, J. Leukoc. Biol., 79, 529–538.

    Article  PubMed  CAS  Google Scholar 

  68. Yilmaz, A., Reiss, C., Tantawi, O., Weng, A., Stumpf, C., Raaz, D., Ludwig, J., Berger, T., Steinkasserer, A., Daniel, W. G., and Garlichs, C. D. (2004) HMG–CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis, Atherosclerosis, 172, 85–93.

    Article  PubMed  CAS  Google Scholar 

  69. Leuenberger, T., Pfueller, C. F., Luessi, F., Bendix, I., Paterka, M., Prozorovski, T., Treue, D., Luenstedt, S., Herz, J., Siffrin, V., Infante–Duarte, C., Zipp, F., and Waiczies, S. (2014) Modulation of dendritic cell immunobiology via inhibition of 3–hydroxy–3–methylglutaryl–CoA (HMG–CoA) reductase, PLoS One, 11, 1–10.

    Google Scholar 

  70. Pfeffer, S. R. (2013) Rab GTPase regulation of membrane identity, Curr. Opin. Cell Biol., 25, 414–419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Cuthbert, J. A., and Lipsky, P. E. (1981) Sterol metabolism and lymphocyte responsiveness: inhibition of endogenous sterol synthesis prevents mitogen–induced human T cell proliferation, J. Immunol., 126, 2093–2099.

    PubMed  CAS  Google Scholar 

  72. Cutts, J. L., and Bankhurst, A. D. (1989) Suppression of lymphoid cell function in vitro by inhibition of 3–hydroxy–3–methylglutaryl coenzyme A reductase by lovastatin, Int. J. Immunopharmacol., 11, 863–869.

    Article  PubMed  CAS  Google Scholar 

  73. Kurakata, S., Kada, M., Shimada, Y., Komai, T., and Nomoto, K. (1996) Effects of different inhibitors of 3–hydroxy–3–methylglutarylcoenzyme A (HMG–CoA) reductase, pravastatin sodium and simvastatin, on sterol synthesis and immunological functions in human lymphocytes in vitro, Immunopharmacology, 34, 51–61.

    CAS  Google Scholar 

  74. Overton, E. T., Sterrett, S., Westfall, A. O., Kahan, S. M., Burkholder, G., Zajac, A. J., Goepfert, P. A., and Bansal, A. (2014) Effects of atorvastatin and pravastatin on immune activation and T–cell function in antiretroviral therapy–suppressed HIV–1–infected patients, AIDS, 28, 2627–2631.

    Article  PubMed  CAS  Google Scholar 

  75. Ganesan, A., Crum–Cianflone, N., Higgins, J., Qin, J., Rehm, C., Metcalf, J., Brandt, C., Vita, J., Decker, C. F., Sklar, P., Bavaro, M., Tasker, S., Follmann, D., and Maldarelli, F. (2011) High dose atorvastatin decreases cellular markers of immune activation without affecting HIV–1 RNA levels: results of a double–blind randomized placebo controlled clinical trial, J. Infect. Dis., 203, 756–764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Weitz–Schmidt, G., Welzenbach, K., Dawson, J., and Kallen, J. (2004) Improved lymphocytefunction–associatedantigen–1 (LFA–1) inhibition by statin derivatives: molecular basis determined by X–ray analysis and monitoring of LFA–1conformational changes in vitro and ex vivo, J. Biol. Chem., 279, 46764–46771.

    Article  PubMed  CAS  Google Scholar 

  77. Waiczies, S., Bendix, I., Prozorovski, T., Ratner, M., Nazarenko, I., Pfueller, C. F., Brandt, A. U., Herz, J., Brocke, S., Ullrich, O., and Zipp, F. (2007) Geranylgeranylation but not GTP loading determines rho migratory function in T cells, J. Immunol., 179, 6024–6032.

    Article  PubMed  CAS  Google Scholar 

  78. Zemskov, A. M. (2008) Clinical Immunology [in Russian], GEOTAR–Media, Moscow.

    Google Scholar 

  79. Khaitov, R. M., Ignat’eva, G. A., and Sidorovich, I. G. (2000) Immunology [in Russian], Meditsina, Moscow.

    Google Scholar 

  80. Frostegard, J., Ulfgren, A. K., Nyberg, P., Hedin, U., Swedenborg, J., Andersson, U., and Hansson, G. K. (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of pro–inflammatory (Th1) and macrophage–stimulating cytokines, Atherosclerosis, 145, 33–43.

    Article  PubMed  CAS  Google Scholar 

  81. Szodoray, P., Timar, O., Veres, K., Der, H., Szomjak, E., Lakos, G., Aleksza, M., Nakken, B., Szegedi, G., and Soltesz, P. (2006) Th1/Th2 imbalance, measured by circulating and intracytoplasmic inflammatory cytokines–immunological alterations in acute coronary syndrome and stable coronary artery disease, Scand. J. Immunol., 64, 336–344.

    Article  PubMed  CAS  Google Scholar 

  82. Ranjbaran, H., Sokol, S. I., Gallo, A., Eid, R. E., Iakimov, A. O., D’Alessio, A., Kapoor, J. R., Akhtar, S., Howes, C. J., Aslan, M., Pfau, S., Pober, J. S., and Tellides, G. (2007) An inflammatory pathway of IFNgamma production in coronary atherosclerosis, J. Immunol., 178, 592–604.

    Article  PubMed  CAS  Google Scholar 

  83. Caligiuri, G., Paulsson, G., Nicoletti, A., Maseri, A., and Hansson, G. K. (2000) Evidence for antigen–driven T–cell response in unstable angina, Circulation, 102, 1114–1119.

    Article  PubMed  CAS  Google Scholar 

  84. Buono, C., Binder, C. J., Stavrakis, G., Witztum, J. L., Glimcher, L. H., and Lichtman, A. H. (2005) T–bet deficiency reduces atherosclerosis and alters plaque antigen–specific immune responses, Proc. Natl. Acad. Sci. USA, 102, 1596–1601.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Buono, C., Come, C. E., Stavrakis, G., Maguire, G. F., Connelly, P. W., and Lichtman, A. H. (2003) Influence of interferon–gamma on the extent and phenotype of diet–induced atherosclerosis in the LDLR–deficient mouse, Arterioscler. Thromb. Vasc. Biol., 23, 454–460.

    Article  PubMed  CAS  Google Scholar 

  86. Mangan, P. R., Harrington, L. E., O’Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D., Wahl, S. M., Schoeb, T. R., and Weaver, C. T. (2006) Transforming growth factor–beta induces development of the T(H)17 lin–eage, Nature, 441, 231–234.

    Article  PubMed  CAS  Google Scholar 

  87. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., and Stockinger, B. (2006) TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL–17–producing T cells, Immunity, 24, 179–189.

    Article  PubMed  CAS  Google Scholar 

  88. Wilson, N. J., Boniface, K., Chan, J. R., McKenzie, B. S., Blumenschein, W. M., Mattson, J. D., Basham, B., Smith, K., Chen, T., Morel, F., Lecron, J. C., Kastelein, R. A., Cua, D. J., McClanahan, T. K., Bowman, E. P., and de Waal Malefyt, R. (2007) Development, cytokine profile and function of human interleukin 17–producing helper T cells, Nat. Immunol., 8, 950–957.

    Article  PubMed  CAS  Google Scholar 

  89. Yang, J., Sundrud, M. S., Skepner, J., and Yamagata, T. (2014) Targeting Th17 cells in autoimmune diseases, Trends Pharmacol. Sci., 35, 493–500.

    Article  PubMed  CAS  Google Scholar 

  90. Ulivieri, C. (2014) Statins: from cholesterol–lowering drugs to novel immunomodulators for the treatment of Th17–mediated autoimmune diseases, Pharmacol. Res., 88, 41–52.

    Article  PubMed  CAS  Google Scholar 

  91. Zheleznikova, G. F. (2011) Regulatory T cells in immune response during infection, Zh. Infektol., 1, 6–13.

    Google Scholar 

  92. Shimada, K., Park, J. K., and Daida, H. (2006) T helper 1/T helper 2 balance and HMG–CoA reductase inhibitors in acute coronary syndrome: statins as immunomodulatory agents? Eur. Heart J., 27, 2916–2918.

    Article  PubMed  CAS  Google Scholar 

  93. Youssef, S., Stuve, O., Patarroyo, J. C., Ruiz, P. J., Radosevich, J. L., Hur, E. M., Bravo, M., Mitchell, D. J., Sobel, R. A., Steinman, L., and Zamvil, S. S. (2002) The HMG–CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease, Nature, 420, 78–84.

    Article  PubMed  CAS  Google Scholar 

  94. Li, W. M., Liu, W., Gao, C., and Zhou, B. G. (2006) Immunoregulatory effects of atorvastatin on experimental autoimmune myocarditis in Lewis rats, Immunol. Cell. Biol., 84, 274–280.

    Article  PubMed  CAS  Google Scholar 

  95. Li, Z., Chen, L., Niu, X., Liu, J., Ping, M., Li, R., Xie, X., and Guo, L. (2012) Immunomodulatory synergy by com–bining atorvastatin and rapamycin in the treatment of experimental autoimmune encephalomyelitis (EAE), J. Neuroimmunol., 250, 9–17.

    Article  PubMed  CAS  Google Scholar 

  96. Nath, N., Giri, S., Prasad, R., Singh, A. K., and Singh, I. (2004) Potential targets of 3–hydroxy–3–methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy, J. Immunol., 172, 1273–1286.

    Article  PubMed  CAS  Google Scholar 

  97. Dunn, S. E., Youssef, S., Goldstein, M. J., Prod’homme, T., Weber, M. S., Zamvil, S. S., and Steinman, L. (2006) Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin, J. Exp. Med., 203, 401–412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Arora, M., Chen, L., Paglia, M., Gallagher, I., Allen, J. E., Vyas, Y. M., Ray, A., and Ray, P. (2006) Simvastatin promotes Th2–type responses through the induction of the chitinase family member Ym1 in dendritic cells, Proc. Natl. Acad. Sci. USA, 103, 7777–7782.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Weber, M. S., Prod’homme, T., Youssef, S., Dunn, S. E., Steinman, L., and Zamvil, S. S. (2014) Neither T–helper type 2 nor Foxp3+ regulatory T cells are necessary for therapeutic benefit of atorvastatin in treatment of central nervous system autoimmunity, J. Neuroinflamm., 11, 2–10.

    Article  CAS  Google Scholar 

  100. Azuma, R. W., Suzuki, J., Ogawa, M., Futamatsu, H., Koga, N., Onai, Y., Kosuge, H., and Isobe, M. (2004) HMG–CoA reductase inhibitor attenuates experimental autoimmune myocarditis through inhibition of T cell activation, Cardiovasc. Res., 64, 412–420.

    Article  PubMed  CAS  Google Scholar 

  101. Leung, B. P., Sattar, N., Crilly, A., Prach, M., McCarey, D. W., Payne, H., Madhok, R., Campbell, C., Gracie, J. A., Liew, F. Y., and McInnes, I. B. (2003) A novel anti–inflammatory role for simvastatin in inflammatory arthritis, J. Immunol., 170, 1524–1530.

    Article  PubMed  CAS  Google Scholar 

  102. Harry, R., Gegg, M., Hankey, D., Zambarakji, H., Pryce, G., Baker, D., Calder, V., Adamson, P., and Greenwood, J. (2005) Suppression of autoimmune retinal disease by lovastatin does not require TH2 cytokine induction, J. Immunol., 174, 2327–2335.

    Article  PubMed  Google Scholar 

  103. Kohno, H., Sakai, T., Saito, S., Okano, K., and Kitahara, K. (2007) Treatment of experimental autoimmune uveoretinitis with atorvastatin and lovastatin, Exp. Eye Res., 84, 569–576.

    Article  PubMed  CAS  Google Scholar 

  104. Thomas, P. B., Albini, T., Giri, R. K., See, R. F., Evans, M., and Rao, N. A. (2005) The effects of atorvastatin in experimental autoimmune uveitis, Br. J. Ophthalmol., 89, 275–279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. De Oliveira, D. M., de Oliveira, E. M., Ferrari Mde, F., Semedo, P., Hiyane, M. I., Cenedeze, M. A., Pacheco–Silva, A., Camara, N. O., and Peron, J. P. (2015) Simvastatin ameliorates experimental autoimmune encephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration, Inflammopharmacology, 23, 343–354.

    Article  PubMed  CAS  Google Scholar 

  106. Tajiri, K., Shimojo, N., Sakai, S., Machino–Ohtsuka, T., Imanaka–Yoshida, K., Hiroe, M., Tsujimura, Y., Kimura, T., Sato, A., Yasutomi, Y., and Aonuma, K. (2013) Pitavastatin regulates helper T–cell differentiation and ameliorates autoimmune myocarditis in mice, Cardiovasc. Drugs Ther., 27, 413–424.

    Article  PubMed  CAS  Google Scholar 

  107. Eller, P., Eller, K., Wolf, A. M., Reinstadler, S. J., Tagwerker, A., Patsch, J. R., Mayer, G., and Rosenkranz, A. R. (2010) Atorvastatin attenuates murine anti–glomerular basement membrane glomerulonephritis, Kidney Int., 77, 428–435.

    Article  PubMed  CAS  Google Scholar 

  108. Kita, T., Brown, M. S., and Goldstein, J. L. (1980) Feedback regulation of 3–hydroxy–3–methylglutaryl coen–zyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase, J. Clin. Invest., 66, 1094–1100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. McKay, A., Leung, B. P., McInnes, I. B., Thomson, N. C., and Liew, F. Y. (2004) A novel anti–inflammatory role of simvastatin in a murine model of allergic asthma, J. Immunol., 172, 2903–2908.

    Article  PubMed  CAS  Google Scholar 

  110. Dostal, L. A., Whitfield, L. R., and Anderson, J. A. (1996) Fertility and general reproduction studies in rats with the HMG–CoA reductase inhibitor, atorvastatin, Fundam. Appl. Toxicol., 32, 285–292.

    Article  PubMed  CAS  Google Scholar 

  111. Kanda, H., Yokota, K., Kohno, C., Sawada, T., Sato, K., Yamaguchi, M., Komagata, Y., Shimada, K., Yamamoto, K., and Mimura, T. (2007) Effects of low–dosage simvastatin on rheumatoid arthritis through reduction of Th1/Th2 and CD4/CD8 ratios, Mod. Rheumatol., 17, 364–368.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang, X., Jin, J., Peng, X., Ramgolam, V. S., and Markovic–Plese, S. (2008) Simvastatin inhibits IL–17 secretion by targeting multiple IL–17 regulatory cytokines and by inhibiting the expression of IL–17 transcription factor RORC in CD4 lymphocytes, J. Immunol., 180, 6988–6996.

    Article  PubMed  CAS  Google Scholar 

  113. Kim, Y. C., Kim, K. K., and Shevach, E. M. (2010) Simvastatin induces Foxp3+ T regulatory cells by modulation of transforming growth factor–beta signal transduction, Immunology, 130, 484–493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kagami, S., Owada, T., Kanari, H., Saito, Y., Suto, A., Ikeda, K., Hirose, K., Watanabe, N., Iwamoto, I., and Nakajima, H. (2009) Protein geranylgeranylation regulates the balance between Th17 cells and Foxp3+ regulatory T cells, Int. Immunol., 21, 679–689.

    Article  PubMed  CAS  Google Scholar 

  115. Ke, D., Fang, J., Fan, L., Chen, Z., and Chen, L. (2013) Regulatory T cells contribute to rosuvastatin–induced cardioprotection against ischemia reperfusion injury, Coron. Artery Dis., 24, 334–341.

    Article  PubMed  Google Scholar 

  116. Meng, X., Zhang, K., Li, J., Dong, M., Yang, J., An, G., Qin, W., Gao, F., Zhang, C., and Zhang, Y. (2012) Statins induce the accumulation of regulatory T cells in atherosclerotic plaque, Mol. Med., 18, 598–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Blanquiceth, Y., Rodriguez–Perea, A. L., Tabares Guevara, J. H., Correa, L. A., Sanchez, M. D., Ramirez–Pineda, J. R., and Velilla, P. A. (2016) Increase of frequency and modulation of phenotype of regulatory T cells by atorvastatin is associated with decreased lung inflammatory cell infiltration in a murine model of acute allergic asthma, Front. Immunol., 21, 1–12.

    Google Scholar 

  118. Mausner–Fainberg, K., Luboshits, G., Mor, A., Maysel–Auslender, S., Rubinstein, A., Keren, G., and George, J. (2008) The effect of HMG–CoA reductase inhibitors on naturally occurring CD4+CD25+ T cells, Atherosclerosis, 197, 829–839.

    Article  PubMed  CAS  Google Scholar 

  119. Tang, T. T., Song, Y., Ding, Y. J., Liao, Y. H., Yu, X., Du, R., Xiao, H., Yuan, J., Zhou, Z. H., Liao, M. Y., Yao, R., Jevallee, H., Shi, G. P., and Cheng, X. (2011) Atorvastatin upregulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis, J. Lipid Res., 52, 1023–1032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Rodriguez–Perea, A. L., Montoya, C. J., Olek, S., Chougnet, C. A., and Velilla, P. A. (2015) Statins increase the frequency of circulating CD4+ FOXP3+ regulatory T cells in healthy individuals, J. Immunol. Res., 2015, 762506.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hu, Z., Li, D., Hu, Y., and Yang, K. (2007) Changes of CD4+CD25+ regulatory T cells in patients with acute coronary syndrome and the effects of atorvastatin, J. Huazhong Univ. Sci. Technol. Med. Sci., 27, 524–527.

    Article  CAS  Google Scholar 

  122. Zhang, D., Wang, S., Guan, Y., Wang, L., Xie, W., Li, N., Zhao, P., and Su, G. (2011) Effect of oral atorvastatin on CD4+CD25+ regulatory T cells, FoxP3 expression, and prognosis in patients with ST–segment elevated myocardial infarction before primary percutaneous coronary intervention, J. Cardiovasc. Pharmacol., 57, 536–541.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Filatova.

Additional information

Original Russian Text © T. I. Arefieva, A. Yu. Filatova, A. V. Potekhina, A. M. Shchinova, 2018, published in Biokhimiya, 2018, Vol. 83, No. 8, pp. 1111–1129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefieva, T.I., Filatova, A.Y., Potekhina, A.V. et al. Immunotropic Effects and Proposed Mechanism of Action for 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Inhibitors (Statins). Biochemistry Moscow 83, 874–889 (2018). https://doi.org/10.1134/S0006297918080023

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918080023

Keywords

Navigation