Skip to main content
Log in

Effect of Disulfide Bond Incorporation on the Structure and Activity of Endostatin Peptide

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The structure and function of a 27-a.a. fragment of the N-terminal sequence of human endostatin (ES-Zn) were compared to those of the mutant peptide (ES-SSZn) obtained by adding Cys-Pro-Ala to the endostatin N-terminus and substituting Asn16 for Cys ensuring formation of a disulfide bond. Structural comparison of ES-Zn and ES-SSZn by far-UV circular dichroism (CD), intrinsic fluorescence, and molecular dynamics simulation methods revealed significant structural perturbations in ES-SSZn, such as elimination of the β-sheet conformer, modification of the N-terminal loop structure, and reorganization of dynamic properties of the entire peptide backbone. ES-SSZn was approximately 2 and 3 times less efficient than ES-Zn and the full-length human endostatin, respectively, in the induction of caspase-3-dependent apoptosis in human umbilical vein endothelial cells (HUVECs) in vitro (p < 0.05). In contrast, treatment of metastatic 4T1 breast tumors in mice with ES-Zn and ES-SSZn (5 mg/kg body weight daily) for 14 days resulted in similar regression of tumor size, comparable downregulation of angiogenesis (CD31 and CD34) and cell proliferation (Ki67), and therefore, the same extent of apoptosis induction (TUNEL, p53, and Bcl-2) for both peptides (as compared to the untreated controls). Western blot analysis of HUVEC and 4T1 tumor lysates revealed the same levels of suppression of key signaling mediators Akt and ERK1/2 by ES-Zn and ES-SSZn. Contrary to the earlier studies, our results showed that the function of the 1-27 endo-statin fragment is independent of its overall structure. Stabilization of the N-terminal loop structure by the disulfide bond incorporation causes relief from structural deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Akt:

serine/threonine protein kinase B

DMEM:

Dulbecco’s modified Eagle’s medium

DSSP:

dictionary of secondary structure of proteins (hydrogen bond estimation algorithm)

ERK1/2:

extracellular signal-regulated kinase 1/2

ES-Zn:

a 27-a.a. fragment of the N-terminal sequence of endo-statin

ES-SSZn:

mutant peptide derived by addition of Cys-Pro-Ala to the N-terminus of ES-Zn peptide and substitution of Asn16 for Cys required for the disulfide bond formation

HUVECs:

human umbilical vein endothelial cells

MAPK:

mitogen-activated protein kinase

MD:

molecular dynamics

PBS:

phosphate buffered saline

PI3K:

phosphoinositide 3-kinase

RMSD:

root mean square deviation

RMSF:

root mean square fluctuation

TUNEL:

terminal deoxynucleotidyl trans-ferase-mediated dUTP nick end labeling

References

  1. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth, Cell, 88, 277–285.

    Article  PubMed  Google Scholar 

  2. Folkman, J. (2006) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action, Exp. Cell. Res., 312, 594–607.

    Article  PubMed  CAS  Google Scholar 

  3. Ding, Y. H., Javaherian, K., Lo, K. M., Chopra, R., Boehm, T., Lanciotti, J., Harris, B. A., Li, Y., Shapiro, R., Hohenester, E., Timpl, R., Folkman, J., and Wiley, D. C. (1998) Zinc dependent dimers observed in crystals of human endostatin, Proc. Natl. Acad. Sci. USA, 95, 10443–10448.

    Article  PubMed  CAS  Google Scholar 

  4. Hohenester, E., Sasaki, T., Olsen, B. R., and Timpl, R. (1998) Crystal structure of the angiogenesis inhibitor endo-statin at 1.5 Е resolution, EMBO J., 17, 1656–1664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fu, Y., and Luo, Y. (2010) The N-terminal integrity is critical for the stability and biological functions of endostatin, Biochemistry, 49, 6420–6429.

    Article  PubMed  CAS  Google Scholar 

  6. Boehm, T., O’Reilly, M. S., Keough, K., Shiloach, J., Shapiro, R., and Folkman, J. (1998) Zinc-binding of endo-statin is essential for its anti-angiogenic activity, Biochem. Biophys. Res. Commun., 252, 190–194.

    Article  PubMed  CAS  Google Scholar 

  7. Hohenester, E., Sasaki, T., Mann, K., and Timpl, R. (2000) Variable zinc coordination in endostatin, J. Mol. Biol., 297, 1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Tjin Tham Sjin, R. M., Satchi-Fainaro, R., Birsner, A. E., Ramanujam, V. M., Folkman, J., and Javaherian, K. (2005) A 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its anti-tumor activity, Cancer Res., 65, 3656–3663.

    Article  PubMed  Google Scholar 

  9. Chamani, R., Asghari, S. M., Alizadeh, A. M., Eskandari, S., Mansouri, K., Khodarahmi, R., Taghdir, M., Heidari, Z., Gorji, A., Aliakbar, A., Ranjbar, B., and Khajeh, K. (2015) Engineering of a disulfide loop instead of a Zn bind-ing loop restores the anti-proliferative, anti-angiogenic and anti-tumor activities of the N-terminal fragment of endo-statin: mechanistic and therapeutic insights, Vasc. Pharmacol., 72, 73–82.

    Article  CAS  Google Scholar 

  10. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis correlation in invasive breast carcinoma, N. Engl. J. Med., 324, 1–8.

    Article  PubMed  CAS  Google Scholar 

  11. Hammond, J. B., and Kruger, N. J. (1988) The Bradford method for protein quantitation, Methods Mol. Biol., 3, 25–32.

    PubMed  CAS  Google Scholar 

  12. Mostafaie, A., Bidmeshkipour, A., Shirvani, Z., Mansouri, K., and Chalabi, M. (2008) A proper new collagenase for isolation of cells from different tissue, Appl. Biochem. Biotechnol., 144, 123–131.

    Article  PubMed  CAS  Google Scholar 

  13. Chamani, R., Asghari, S. M., Alizadeh, A. M., Mansouri, K., Doroudi, T., Kolivand, P. H., Ghafouri, H., Ehtesham, S., Rabouti, H., and Mehrnejad, F. (2016) The antiangiogenic and antitumor activities of the N-terminal fragment of endostatin augmented by Ile/Arg substitution: the over-all structure implicated the biological activity, Biochim. Biophys. Acta, 1864, 1765–1774.

    Article  PubMed  CAS  Google Scholar 

  14. Khori, V., Amani Shalamzari, S., Isanejad, A., Alizadeh, A. M., Alizadeh, S., Khodayari, S., Khodayari, H., Shahbazi, S., Zahedi, A., Sohanaki, H., Khaniki, M., Mahdian, R., Saffari, M., and Fayad, R. (2015) Effects of exercise training together with tamoxifen in reducing mammary tumor burden in mice: possible underlying pathway of miR-21, Eur. J. Pharmacol., 765, 179–187.

    Article  PubMed  CAS  Google Scholar 

  15. Lanari, C., Luthy, I., Lamb, C. A., Fabris, V., Pagano, E., Helguero, L. A., Sanjuan, N., Merani, S., and Molinolo, A. A. (2001) Five novel hormone-responsive cell lines derived from murine mammary ductal carcinomas: in vivo and in vitro effects of estrogens and progestins, Cancer Res., 61, 293–302.

    PubMed  CAS  Google Scholar 

  16. Mohsenikia, M., Alizadeh, A. M., Khodayari, S., Khodayari, H., Kouhpayeh, S. A., Karimi, A., Zamani, M., Azizian, S., and Mohagheghi, M. A. (2013) The protective and therapeutic effects of alpha-solanine on mice breast cancer, Eur. J. Pharmacol., 718, 1–9.

    Article  PubMed  CAS  Google Scholar 

  17. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) ClusPro: a fully automated algorithm for protein-protein docking, Nucleic Acids Res., 32, 96–99.

    Article  CAS  Google Scholar 

  18. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes, Bioinformatics, 20, 45–50.

    Article  PubMed  CAS  Google Scholar 

  19. Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  20. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701–1718.

    Article  CAS  Google Scholar 

  21. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theor. Comput., 4, 435–447.

    Article  CAS  Google Scholar 

  22. Kabsch, W., and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  23. Kang, H. Y., Shim, D., Kang, S. S., Chang, S. I., and Kim, H. Y. (2006) Protein kinase B inhibits endostatin-induced apoptosis in HUVECs, J. Biochem. Mol. Biol., 39, 97–104.

    PubMed  CAS  Google Scholar 

  24. Yuan, S., Fu, Y., Wang, X., Shi, H., Huang, Y., Song, X., Li, L., Song, N., and Luo, Y. (2008) Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis, FASEB J., 22, 2809–2820.

    Article  PubMed  CAS  Google Scholar 

  25. Folkman, J. (2003) Angiogenesis and apoptosis, Semin. Cancer Biol., 13, 159–167.

    Article  PubMed  CAS  Google Scholar 

  26. Miyashita, T., and Reed, J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, 80, 293–299.

    Article  PubMed  CAS  Google Scholar 

  27. Haldar, S., Negrini, M., Monne, M., Sabbioni, S., and Croce, C. M. (1994) Down-regulation of bcl-2 by p53 in breast cancer cells, Cancer Res., 54, 2095–2097.

    PubMed  CAS  Google Scholar 

  28. Simons, M., Emma Gordon, E., and Welsh, L. C. (2016) Mechanisms and regulation of endothelial VEGF receptor signaling, Nat. Rev. Mol. Cell Biol., 17, 611–625.

    Article  PubMed  CAS  Google Scholar 

  29. Hong, C. C., Peterson, Q. P., Hong, J. Y., and Peterson, R. T. (2006) Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK1/2 signaling, Curr. Biol., 16, 1366–1372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Murakami, M. (2011) FGF-dependent regulation of VEGF receptor 2 expression in mice, J. Clin. Invest., 121, 2668–2678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shiojima, I., and Walsh, K. (2002) Role of Akt signaling in vascular homeostasis and angiogenesis, Circ. Res., 90, 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  32. Olsson, A. K., Dimberg, A., Kreuger, J., and Welsh, L. C. (2016) VEGF receptor signalling-in control of vascular function, Nat. Rev. Mol. Cell Biol., 7, 359–371.

    Article  CAS  Google Scholar 

  33. Krock, B. L., Skuli, N., and Simon, M. C. (2011) Hypoxia-induced angiogenesis: good and evil, Genes Cancer, 2, 1117–1133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zheng, J. H., Viacava, F. A., Kriwacki, R. W., and Moldoveanu, T. (2016) Discoveries and controversies in BCL-2 protein-mediated apoptosis, FEBS J., 283, 2690–2700.

    Article  PubMed  CAS  Google Scholar 

  35. Hsu, M. J., Wu, C. Y., Chiang, H. H., Lai, Y. L., and Hung, S. L. (2010) PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection, J. Virus Res., 153, 36–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sariri or S. Hosseinkhani.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 11, pp. 1708–1721.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehtesham, S., Sariri, R., Eidi, A. et al. Effect of Disulfide Bond Incorporation on the Structure and Activity of Endostatin Peptide. Biochemistry Moscow 83, 1388–1398 (2018). https://doi.org/10.1134/S0006297918110093

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918110093

Keywords

Navigation