Skip to main content
Log in

Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

For a long time asthma was commonly considered as a homogeneous disease. However, recent studies provide increasing evidence of its heterogeneity and existence of different phenotypes of the disease. Currently, classification of asthma into several phenotypes is based on clinical and physiological features, anamnesis, and response to therapy. This review describes five most frequently identified asthma phenotypes. Neutrophilic asthma (NA) deserves special attention, since neutrophilic inflammation of the lungs is closely associated with severity of the disease and with the resistance to conventional corticosteroid therapy. This review focuses on molecular mechanisms of neutrophilic asthma pathogenesis and on the role of Th1- and Th17-cells in the development of this type of asthma. In addition, this review presents current knowledge of neutrophil biology. It has been established that human neutrophils are represented by at least three subpopulations with different biological functions. Therefore, total elimination of neutrophils from the lungs can result in negative consequences. Based on the new knowledge of NA pathogenesis and biology of neutrophils, the review summarizes current approaches for treatment of neutrophilic asthma and suggests new promising ways to treat this type of asthma that could be developed in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure.

Similar content being viewed by others

Abbreviations

ASIT:

allergen-specific immunotherapy

NA:

neutrophilic asthma

ILC2:

type 2 innate lymphoid cells

NETs:

neutrophil extracellular traps, BM, bone marrow

REFERENCES

  1. GINA Committee. Global Initiative for Asthma (2020) Global strategy for asthma management and prevention: 2020 (URL: https://doi.org/ginasthma.org/wp-content/uploads/2020/04/GINA-2020-Appendix_final-wms.pdf.

  2. Soriano, J. B., Abajobir, A. A., Abate, K. H., Abera, S. F., Agrawal, A. et al. (2017) Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet Respir. Med., 5, 691-706, doi: https://doi.org/10.1016/S2213-2600(17)30293-X.

    Article  Google Scholar 

  3. Avdeev, S. N., Nenasheva, N. M., Zhudenkov, K. V., Petrakovskaya, V. A., and Izyumova, G. V. (2018) Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in Russian Federation, Pulmonologiya, 28, 341-358, doi: https://doi.org/10.18093/0869-0189-2018-28-3-341-358.

    Article  Google Scholar 

  4. Moote, W., Kim, H., and Ellis, A. K. (2018) Allergen-specific immunotherapy, Allergy Asthma Clin. Immunol., 14, 1-10, doi: https://doi.org/10.1186/s13223-018-0282-5.

    Article  CAS  Google Scholar 

  5. Pavlova, K. S., Kurbacheva, O. M., Galitskaya, M. A., and Smirnov, D. S. (2017) Actual conception of allergen-specific immunotherapy mechanisms, potential biomarkers of efficacy and ways of enhancement, Russ. Allergol. J., 14, 5-17.

    Google Scholar 

  6. Corren, J., Lemanske, R. F., Hanania, N. A., Korenblat, P. E., Parsey, M. V., Arron, J. R., Harris, J. M., Scheerens, H., Wu, L. C., Su, Z., Mosesova, S., Eisner, M. D., Bohen, S. P., and Matthews, J. G. (2011) Lebrikizumab treatment in adults with asthma, New Eng. J. Med., 365, 1088-1098, doi: https://doi.org/10.1056/NEJMoa1106469.

    Article  CAS  PubMed  Google Scholar 

  7. Boyman, O., Kaegi, C., Akdis, M., Bavbek, S., Bossios, A., Chatzipetrou, A., Eiwegger, T., Firinu, D., Harr, T., Knol, E., Matucci, A., Palomares, O., Schmidt-Weber, C., Simon, H. U., Steiner, U. C., Vultaggio, A., Akdis, C. A., and Spertini, F. (2015) EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders, Allergy, 70, 727-754, doi: https://doi.org/10.1111/all.12616.

    Article  CAS  PubMed  Google Scholar 

  8. Kuruvilla, M. E., Lee, F. E. H., and Lee, G. B. (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease, Clin. Rev. Allergy Immunol., 56, 219-233, doi: https://doi.org/10.1007/s12016-018-8712-1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grayson, M. H., Feldman, S., Prince, B. T., Patel, P. J., Matsui, E. C., and Apter, A. J. (2018) Advances in asthma in 2017: mechanisms, biologics, and genetics, J. Allergy Clin. Immunol., 142, 1423-1436, doi: https://doi.org/10.1016/j.jaci.2018.08.033.

    Article  CAS  PubMed  Google Scholar 

  10. Wenzel, S. E. (2012) Asthma phenotypes: the evolution from clinical to molecular approaches, Nat. Med., 18, 716-725, doi: https://doi.org/10.1038/nm.2678.

    Article  CAS  PubMed  Google Scholar 

  11. Miranda, C., Busacker, A., Balzar, S., Trudeau, J., and Wenzel, S. E. (2004) Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation, J. Allergy Clin. Immunol., 113, 101-108, doi: https://doi.org/10.1016/j.jaci.2003.10.041.

    Article  PubMed  Google Scholar 

  12. Hirano, T., and Matsunaga, K. (2018) Late-onset asthma: current perspectives, J. Asthma Allergy, 11, 19-27, doi: https://doi.org/10.2147/JAA.S125948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aggarwal, B., Mulgirigama, A., and Berend, N. (2018) Exercise-induced bronchoconstriction: prevalence, pathophysiology, patient impact, diagnosis and management, Prim. Care Respir. Med., 28, 1-8, doi: https://doi.org/10.1038/s41533-018-0098-2.

    Article  CAS  Google Scholar 

  14. Peters, U., Dixon, A. E., and Forno, E. (2018) Obesity and asthma, J. Allergy Clin. Immunol., 141, 1169-1179, doi: https://doi.org/10.1016/j.jaci.2018.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fitzpatrick, A. M., Teague, W. G., Meyers, D. A., Peters, S. P., Li, X., Li, H., Wenzel, S. E., Aujla, S., Castro, M., Bacharier, L. B., Gaston, B. M., Bleecker, E. R., and Moore, W. C. (2011) Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the national institutes of health/national heart, lung, and blood institute severe asthma research program, J. Allergy Clin. Immunol., 127, 382-389, doi: https://doi.org/10.1016/j.jaci.2010.11.015.

    Article  PubMed  Google Scholar 

  16. Moore, W. C., Meyers, D. A., Wenzel, S. E., Teague, W. G., Li, H. et al. (2010) Identification of asthma phenotypes using cluster analysis in the severe asthma research program, Am. J. Respir. Crit. Care Med., 181, 315-323, doi: https://doi.org/10.1164/rccm.200906-0896OC.

    Article  PubMed  Google Scholar 

  17. Achuthan, A., Aslam, A. S. M., Nguyen, Q., Lam, P. Y., Fleetwood, A. J., Frye, A. T., Louis, C., Lee, M., Smith, J. E., Cook, A. D., Olshansky, M., Turner, S. J., and Hamilton, J. A. (2018) Glucocorticoids promote apoptosis of proinflammatory monocytes by inhibiting ERK activity article, Cell Death Dis., 9, 1-13, doi: https://doi.org/10.1038/s41419-018-0332-4.

    Article  CAS  Google Scholar 

  18. Maneechotesuwan, K., Yao, X., Ito, K., Jazrawi, E., Usmani, O. S., Adcock, I. M., and Barnes, P. J. (2009) Suppression of GATA-3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease, PLoS Med., 6, 1-13, doi: https://doi.org/10.1371/journal.pmed.1000076.

    Article  CAS  Google Scholar 

  19. Jayaram, L., Pizzichini, M. M., Cook, R. J., Boulet, L. P., Lemière, C., Pizzichini, E., Cartier, A., Hussack, P., Goldsmith, C. H., Laviolette, M., Parameswaran, K., and Hargreave, F. E. (2006) Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations, Eur. Respir. J., 27, 483-494, doi: https://doi.org/10.1183/09031936.06.00137704.

    Article  CAS  PubMed  Google Scholar 

  20. Woodruff, P. G., Modrek, B., Choy, D. F., Jia, G., Abbas, A. R., Ellwanger, A., Koth, L. L., Arron, J. R., and Fahy, J. V. (2009) T-helper type 2-driven inflammation defines major subphenotypes of asthma, Am. J. Respir. Crit. Care Med., 180, 388-395, doi: https://doi.org/10.1164/rccm.200903-0392OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Veen, I. H., ten Brinke, A., Gauw, S. A., Sterk, P. J., Rabe, K. F., and Bel, E. H. (2009) Consistency of sputum eosinophilia in difficult-to-treat asthma: a 5-year follow-up study, J. Allergy Clin. Immunol., 124, 615-617, doi: https://doi.org/10.1016/j.jaci.2009.06.029.

    Article  PubMed  Google Scholar 

  22. Khaitov, M. R., Gaisina, A. R., Shilovskiy, I. P., Smirnov, V. V., Ramenskaia, G. V., Nikonova, A. A., and Khaitov, R. M. (2018) The role of interleukin-33 in pathogenesis of bronchial asthma. New experimental data, Biochemistry (Moscow), 83, 13-25, doi: https://doi.org/10.1134/S0006297918010029.

    Article  CAS  Google Scholar 

  23. Hassani, M., and Koenderman, L. (2018) Immunological and hematological effects of IL-5(Rα)-targeted therapy: an overview, Allergy, 73, 1979-1988, doi: https://doi.org/10.1111/all.13451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bartemes, K. R., Iijima, K., Kobayashi, T., Kephart, G. M., McKenzie, A. N., and Kita, H. (2012) IL-33-responsive lineage – CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs, J. Immunol., 188, 1503-1513, doi: https://doi.org/10.4049/jimmunol.1102832.

    Article  CAS  PubMed  Google Scholar 

  25. Druilhe, A., Létuvé, S., and Pretolani, M. (2003) Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action, Apoptosis, 8, 481-495, doi: https://doi.org/10.1023/a:1025590308147.

    Article  CAS  PubMed  Google Scholar 

  26. Brinke, A. T., Zwinderman, A. H., Sterk, P. J., Rabe, K. F., and Bel, E. H. (2004) “Refractory” eosinophilic airway inflammation in severe asthma: effect of parenteral corticosteroids, Am. J. Respir. Crit. Care Med., 170, 601-605, doi: https://doi.org/10.1164/rccm.200404-440OC.

    Article  PubMed  Google Scholar 

  27. Doran, E., Cai, F., Holweg, C. T. J., Wong, K., Brumm, J., and Arron, J. R. (2017) Interleukin-13 in asthma and other eosinophilic disorders, Front. Med., 4, 1-14, doi: https://doi.org/10.3389/fmed.2017.00139.

    Article  Google Scholar 

  28. Parker, J. M., Oh, C. K., LaForce, C., Miller, S. D., Pearlman, D. S., Le, C., Robbie, G. J., White, W. I., White, B., and Molfino, N. A. (2011) Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma, BMC Pulm. Med., 11, 1-10, doi: https://doi.org/10.1186/1471-2466-11-14.

    Article  CAS  Google Scholar 

  29. Saeki, M., Kaminuma, O., Nishimura, T., Kitamura, N., Mori, A., and Hiroi, T. (2016) Th9 cells elicit eosinophil-independent bronchial hyperresponsiveness in mice, Allergol. Int., 65, 24-29, doi: https://doi.org/10.1016/j.alit.2016.05.003.

    Article  Google Scholar 

  30. Dixon, A. E., Pratley, R. E., Forgione, P. M., Kaminsky, D. A., Whittaker-Leclair, L. A., Griffes, L. A., Garudathri, J., Raymond, D., Poynter, M. E., Bunn, J. Y., and Irvin, C. G. (2011) Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation, J. Allergy Clin. Immunol., 128, 508-515, doi: https://doi.org/10.1016/j.jaci.2011.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moore, W. C., Hastie, A. T., Li, X., Li, H., Busse, W. W., Jarjour, N. N., Wenzel, S. E., Peters, S. P., Meyers, D. A., and Bleecker, E. R. (2014) Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis, J. Allergy Clin. Immunol., 133, 1557-1563, doi: https://doi.org/10.1016/j.jaci.2013.10.011.

    Article  PubMed  Google Scholar 

  32. Ray, A., and Kolls, J. K. (2017) Neutrophilic inflammation in asthma and association with disease severity, Trends Immunol., 38, 942-954, doi: https://doi.org/10.1016/j.it.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, J., and Wu, F. (2018) Association between fractional exhaled nitric oxide, sputum induction and peripheral blood eosinophil in uncontrolled asthma, Allergy Asthma Clin. Immunol., 14, 1-9, doi: https://doi.org/10.1186/s13223-018-0248-7.

    Article  CAS  Google Scholar 

  34. Scott, H. A., Gibson, P. G., Garg, M. L., and Wood, L. G. (2011) Airway inflammation is augmented by obesity and fatty acids in asthma, Eur. Respir. J., 38, 594-602, doi: https://doi.org/10.1183/09031936.00139810.

    Article  CAS  PubMed  Google Scholar 

  35. Kim, H. Y., Lee, H. J., Chang, Y. J., Pichavant, M., Shore, S. A., Fitzgerald, K. A., Iwakura, Y., Israel, E., Bolger, K., Faul, J., DeKruyff, R. H., and Umetsu, D. T. (2014) Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity, Nat. Med., 20, 54-61, doi: https://doi.org/10.1038/nm.3423.

    Article  CAS  PubMed  Google Scholar 

  36. Brown, G. D. (2011) Innate antifungal immunity: the key role of phagocytes, Annu. Rev. Immunol., 29, 1-21, doi: https://doi.org/10.1146/annurev-immunol-030409-101229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Openshaw, P. J. M., Chiu, C., Culley, F. J., and Johansson, C. (2017) Protective and harmful immunity to RSV infection, Annu. Rev. Immunol., 35, 501-532, doi: https://doi.org/10.1146/annurev-immunol-051116-052206.

    Article  CAS  PubMed  Google Scholar 

  38. Simpson, J. L., Daly, J., Baines, K. J., Yang, I. A., Upham, J. W., Reynolds, P. N., Hodge, S., James, A. L., Hugenholtz, P., Willner, D., and Gibson, P. G. (2016) Airway dysbiosis: Haemophilus influenza and Tropheryma in poorly controlled asthma, Eur. Respir. J., 47, 792-800, doi: https://doi.org/10.1183/13993003.00405-2015.

    Article  PubMed  Google Scholar 

  39. Polosa, R., and Thomson, N. C. (2013) Smoking and asthma: dangerous liaisons, Eur. Respir. J., 41, 716-725, doi: https://doi.org/10.1183/09031936.00073312.

    Article  CAS  PubMed  Google Scholar 

  40. Kato, T., Takeda, Y., Nakada, T., and Sendo, F. (1995) Inhibition by dexamethasone of human neutrophil apoptosis in vitro, Nat. Immun., 14, 198-208.

    CAS  PubMed  Google Scholar 

  41. Gupta, S., Siddiqui, S., Haldar, P., Raj, J. V., Entwisle, J. J., Wardlaw, A. J., Bradding, P., Pavord, I. D., Green, R. H., and Brightling, C. E. (2009) Qualitative analysis of high-resolution CT scans in severe asthma, Chest, 136, 1521-1528, doi: https://doi.org/10.1378/chest.09-0174.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baines, K. J., Simpson, J. L., Wood, L. G., Scott, R. J., and Gibson, P. G. (2011) Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples, J. Allergy Clin. Immunol., 127, 153-160, doi: https://doi.org/10.1016/j.jaci.2010.10.024.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, W., Bleecker, E., Moore, W., Busse, W. W., Castro, M., Chung, K. F., Calhoun, W. J., Erzurum, S., Gaston, B., Israel, E., Curran-Everett, D., and Wenzel, S. E. (2014) Unsupervised phenotyping of severe asthma research program participants using expanded lung data, J. Allergy Clin. Immunol., 133, 1280-1288, doi: https://doi.org/10.1016/j.jaci.2013.11.042.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Raundhal, M., Morse, C., Khare, A., Oriss, T. B., Milosevic, J., Trudeau, J., Huff, R., Pilewski, J., Holguin, F., Kolls, J., Wenzel, S., Ray, P., and Ray, A. (2015) High IFN-γ and low SLPI mark severe asthma in mice and humans, J. Clin. Invest., 125, 3037-3050, doi: https://doi.org/10.1172/JCI80911.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, W., Liu, S., Verma, M., Zafar, I., Good, J. T., Rollins, D., Groshong, S., Gorska, M. M., Martin, R. J., and Alam, R. (2017) Mechanism of TH2/TH17-predominant and neutrophilic TH2/TH17-low subtypes of asthma, J. Allergy Clin. Immunol., 139, 1548-1558, doi: https://doi.org/10.1016/j.jaci.2016.08.032.

    Article  CAS  PubMed  Google Scholar 

  46. Gibson, P. G., Simpson, J. L., and Saltos, N. (2001) Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8, Chest, 119, 1329-1336, doi: https://doi.org/10.1378/chest.119.5.1329.

    Article  CAS  PubMed  Google Scholar 

  47. Pelletier, M., Maggi, L., Micheletti, A., Lazzeri, E., Tamassia, N., Costantini, C., Cosmi, L., Lunardi, C., Annunziato, F., Romagnani, S., and Cassatella, M. A. (2010) Evidence for a cross-talk between human neutrophils and Th17 cells, Blood, 115, 335-343, doi: https://doi.org/10.1182/blood-2009-04-216085.

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen, T. H., Maltby, S., Simpson, J. L., Eyers, F., Baines, K. J., Gibson, P. G., Foster, P. S., and Yang, M. (2016) TNF-α and macrophages are critical for respiratory syncytial virus-induced exacerbations in a mouse model of allergic airways disease, J. Immunol., 196, 3547-3558, doi: https://doi.org/10.4049/jimmunol.1502339.

    Article  CAS  PubMed  Google Scholar 

  49. Peters, M. C., McGrath, K. W., Hawkins, G. A., Hastie, A. T., Levy, B. D. et al. (2016) Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts, Lancet Respir. Med., 4, 574-584, doi: https://doi.org/10.1016/S2213-2600(16)30048-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chu, D. K., Al-Garawi, A., Llop-Guevara, A., Pillai, R. A., Radford, K., Shen, P., Walker, T. D., Goncharova, S., Calhoun, W. J., Nair, P., and Jordana, M. (2015) Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma, Allergy Asthma Clin. Immunol., 11, 1-6, doi: https://doi.org/10.1186/s13223-015-0081-1.

    Article  CAS  Google Scholar 

  51. Duvall, M. G., Barnig, C., Cernadas, M., Ricklefs, I., Krishnamoorthy, N. et al. (2017) Natural killer cell-mediated inflammation resolution is disabled in severe asthma, Sci. Immunol., 2, 1-23, doi: https://doi.org/10.1126/sciimmunol.aam5446.

    Article  Google Scholar 

  52. Geginat, J., Paroni, M., Maglie, S., Alfen, J. S., Kastirr, I., Gruarin, P., Simone, M. D., Pagani, M., and Abrignani, S. (2014) Plasticity of human CD4 T cell subsets, Front. Immunol., 5, 1-10, doi: https://doi.org/10.3389/fimmu.2014.00630.

    Article  CAS  Google Scholar 

  53. Yoneyama, H., Narumi, S., Zhang, Y., Murai, M., Baggiolini, M., Lanzavecchia, A., Ichida, T., Asakura, H., and Matsushima, K. (2002) Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes, J. Exp. Med., 195, 1257-1266, doi: https://doi.org/10.1084/jem.20011983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ricciardolo, F. L. M., Sorbello, V., Folino, A., Gallo, F., Massaglia, G. M., Favatà, G., Conticello, S., Vallese, D., Gani, F., Malerba, M., Folkerts, G., Rolla, G., Profita, M., Mauad, T., Stefano, A. D., and Ciprandi, G. (2017) Identification of IL-17F/frequent exacerbator endotype in asthma, J. Allergy Clin. Immunol., 140, 395-406, doi: https://doi.org/10.1016/j.jaci.2016.10.034.

    Article  CAS  PubMed  Google Scholar 

  55. Agache, I., Ciobanu, C., Agache, C., and Anghel, M. (2010) Increased serum IL-17 is an independent risk factor for severe asthma, Respir. Med., 104, 1131-1137, doi: https://doi.org/10.1016/j.rmed.2010.02.018.

    Article  PubMed  Google Scholar 

  56. Bullens, D. M. A., Truyen, E., Coteur, L., Dilissen, E., Hellings, P. W., Dupont, L. J., and Ceuppens, J. L. (2006) IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res., 7, 1-9, doi: https://doi.org/10.1186/1465-9921-7-135.

    Article  CAS  Google Scholar 

  57. Liang, S. C., Long, A. J., Bennett, F., Whitters, M. J., Karim, R., Collins, M., Goldman, S. J., Dunussi-Joannopoulos, K., Williams, C. M. M., Wright, J. F., and Fouser, L. A. (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment, J. Immunol., 179, 7791-7799, doi: https://doi.org/10.4049/jimmunol.179.11.7791.

    Article  CAS  PubMed  Google Scholar 

  58. McKinley, L., Alcorn, J. F., Peterson, A., Dupont, R. B., Kapadia, S., Logar, A., Henry, A., Irvin, C. G., Piganelli, J. D., Ray, A., and Kolls, J. K. (2008) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice, J. Immunol., 181, 4089-4097, doi: https://doi.org/10.4049/jimmunol.181.6.4089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willis, C. R., Siegel, L., Leith, A., Mohn, D., Escobar, S., Wannberg, S., Misura, K., Rickel, E., Rottman, J. B., Comeau, M. R., Sullivan, J. K., Metz, D. P., Tocker, J., and Budelsky, A. L. (2015) IL-17RA signaling in airway inflammation and bronchial hyperreactivity in allergic asthma, Am. J. Respir. Cell Mol. Biol., 53, 810-821, doi: https://doi.org/10.1165/rcmb.2015-0038OC.

    Article  CAS  PubMed  Google Scholar 

  60. Lajoie, S., Lewkowich, I. P., Suzuki, Y., Clark, J. R., Sproles, A. A., Dienger, K., Budelsky, A. L., and Wills-Karp, M. (2010) Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma, Nat. Immunol., 11, 928-935, doi: https://doi.org/10.1038/ni.1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Torjusen, E., and Matsui, E. C. (2009) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice, Pediatrics, 124, 140, doi: https://doi.org/10.1542/peds.2009-1870DDD.

    Article  Google Scholar 

  62. Malmhall, C., Bossios, A., Radinger, M., Sjostrand, M., Lu, Y., Lundback, B., and Lotvall, J. (2012) Immunophenotyping of circulating T helper cells argues for multiple functions and plasticity of T cells in vivo in humans – possible role in asthma, PLoS One, 7, 1-11, doi: https://doi.org/10.1371/journal.pone.0040012.

    Article  CAS  Google Scholar 

  63. Zou, X. L., Chen, Z. G., Zhang, T. T., Feng, D. Y., Li, H. T., and Yang, H. L. (2018) Th17/Treg homeostasis, but not Th1/Th2 homeostasis, is implicated in exacerbation of human bronchial asthma, Ther. Clin. Risk Manag., 14, 1627-1636, doi: https://doi.org/10.2147/TCRM.S172262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Norimoto, A., Hirose, K., Iwata, A., Tamachi, T., Yokota, M., Takahashi, K., Saijo, S., Iwakura, Y., and Nakajima, H. (2014) Dectin-2 promotes house dust mite-induced T helper type 2 and type 17 cell differentiation and allergic airway inflammation in mice, Am. J. Respir. Cell Mol. Biol., 51, 201-209, doi: https://doi.org/10.1165/rcmb.2013-0522OC.

    Article  CAS  PubMed  Google Scholar 

  65. Khare, A., Krishnamoorthy, N., Oriss, T. B., Fei, M., Ray, P., and Ray, A. (2013) Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance, J. Immunol., 191, 25-29, doi: https://doi.org/10.4049/jimmunol.1300193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chang, Y., Al-Alwan, L., Risse, P. A., Halayko, A. J., Martin, J. G., Baglole, C. J., Eidelman, D. H., and Hamid, Q. (2012) Th17-associated cytokines promote human airway smooth muscle cell proliferation, FASEB J., 26, 5152-5160, doi: https://doi.org/10.1096/fj.12-208033.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Q., Li, H., Yao, Y., Xia, D., and Zhou, J. (2010) The overexpression of heparin-binding epidermal growth factor is responsible for Th17-induced airway remodeling in an experimental asthma model, J. Immunol., 185, 834-841, doi: https://doi.org/10.4049/jimmunol.0901490.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, D., Tan, Y., Bajinka, O., Wang, L., and Tang, Z. (2020) Th17/IL-17 axis regulated by airway microbes get involved in the development of asthma, Curr. Allergy Asthma Rep., 20, 1-9, doi: https://doi.org/10.1007/s11882-020-00903-x.

    Article  Google Scholar 

  69. Kelley, N., Jeltema, D., Duan, Y., and He, Y. (2019) The NLRP3 inflammasome: An overview of mechanisms of activation and regulation, Inter. J. Mol. Sci., 20, 1-24, doi: https://doi.org/10.3390/ijms20133328.

    Article  CAS  Google Scholar 

  70. Simpson, J. L., Phipps, S., Baines, K. J., Oreo, K. M., Gunawardhana, L., and Gibson, P. G. (2014) Elevated expression of the NLRP3 inflammasome in neutrophilic asthma, Eur. Respir. J., 43, 1067-1076, doi: https://doi.org/10.1183/09031936.00105013.

    Article  CAS  PubMed  Google Scholar 

  71. Doherty, T. A., and Broide, D. H. (2019) Airway innate lymphoid cells in the induction and regulation of allergy, Aller. Intern., 68, 9-16, doi: https://doi.org/10.1016/j.alit.2018.11.001.

    Article  CAS  Google Scholar 

  72. Hekking, P. P., Loza, M. J., Pavlidis, S., de Meulder, B., Lefaudeux, D. et al. (2018) Pathway discovery using transcriptomic profiles in adult-onset severe asthma, J. Allergy Clin. Immunol., 141, 1280-1290, doi: https://doi.org/10.1016/j.jaci.2017.06.037.

    Article  CAS  PubMed  Google Scholar 

  73. Yagami, A., Orihara, K., Morita, H., Futamura, K., Hashimoto, N., Matsumoto, K., Saito, H., and Matsuda, A. (2010) IL-33 mediates inflammatory responses in human lung tissue cells, J. Immunol., 185, 5743-5750, doi: https://doi.org/10.4049/jimmunol.0903818.

    Article  CAS  PubMed  Google Scholar 

  74. Nauseef, W. M., and Borregaard, N. (2014) Neutrophils at work, Nat. Immunol., 15, 602-611, doi: https://doi.org/10.1038/ni.2921.

    Article  CAS  PubMed  Google Scholar 

  75. Liu, T., Wang, F. P., Wang, G., and Mao, H. (2017) Role of neutrophil extracellular traps in asthma and chronic obstructive pulmonary disease, Chin. Med. J., 130, 730-736, doi: https://doi.org/10.4103/0366-6999.201608.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ogawa, H., Azuma, M., Tsunematsu, T., Morimoto, Y., Kondo, M., Tezuka, T., Nishioka, Y., and Tsuneyama, K. (2018) Neutrophils induce smooth muscle hyperplasia via neutrophil elastase-induced FGF-2 in a mouse model of asthma with mixed inflammation, Clin. Exp. Allergy, 48, 1715-1725, doi: https://doi.org/10.1111/cea.13263.

    Article  CAS  PubMed  Google Scholar 

  77. Pillay, J., den Braber, I., Vrisekoop, N., Kwast, L. M., de Boer, R. J., Borghans, J. A. M., Tesselaar, K., and Koenderman, L. (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5,4 days, Blood, 116, 625-627, doi: https://doi.org/10.1182/blood-2010-01-259028.

    Article  CAS  PubMed  Google Scholar 

  78. Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M., and Scapini, P. (2019) Neutrophil diversity in health and disease, Trends Immunol., 40, 565-583, doi: https://doi.org/10.1016/j.it.2019.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fites, J. S., Gui, M., Kernien, J. F., Negoro, P., Dagher, Z., Sykes, D. B., Nett, J. E., Mansour, M. K., and Klein, B. S. (2018) An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections, PLoS Pathog., 14, 1-32, doi: https://doi.org/10.1371/journal.ppat.1007073.

    Article  CAS  Google Scholar 

  80. Pillay, J., Tak, T., Kamp, V. M., and Koenderman, L. (2013) Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences, Cell. Mol. Life Sci., 70, 3813-3827, doi: https://doi.org/10.1007/s00018-013-1286-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cowan, D. C., Cowan, J. O., Palmay, R., Williamson, A., and Taylor, D. R. (2010) Effects of steroid therapy on inflammatory cell subtypes in asthma, Thorax, 65, 384-390, doi: https://doi.org/10.1136/thx.2009.126722.

    Article  PubMed  Google Scholar 

  82. Demarche, S., Schleich, F., Henket, M., Paulus, V., Louis, R., and Hees, T. V. (2018) Step-down of inhaled corticosteroids in non-eosinophilic asthma: a prospective trial in real life, Clin. Exp. Allergy, 48, 525-535, doi: https://doi.org/10.1111/cea.13106.

    Article  CAS  PubMed  Google Scholar 

  83. Watz, H., Bock, D., Meyer, M., Schierhorn, K., Vollhardt, K., Woischwill, C., Pedersen, F., Kirsten, A., Beeh, K., Meyer-Sabellek, W., Magnussen, H., and Beier, J. (2013) Inhaled pan-selectin antagonist bimosiamose attenuates airway inflammation in COPD, Pulm. Pharmacol. Ther., 26, 265-270, doi: https://doi.org/10.1016/j.pupt.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  84. Nair, P., Gaga, M., Zervas, E., Alagha, K., Hargreave, F. E., O’Byrne, P. M., Stryszak, P., Gann, L., Sadeh, J., and Chanez, P. (2012) Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial, Clin. Exp. Allergy, 42, 1097-1103, doi: https://doi.org/10.1111/j.1365-2222.2012.04014.x.

    Article  CAS  PubMed  Google Scholar 

  85. Leaker, B. R., Barnes, P. J., and O’Connor, B. (2013) Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist, Respir. Res., 14, 1-9, doi: https://doi.org/10.1186/1465-9921-14-137.

    Article  CAS  Google Scholar 

  86. O’Byrne, P. M., Metev, H., Puu, M., Richter, K., Keen, C., Uddin, M., Larsson, B., Cullberg, M., and Nair, P. (2016) Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial, Lancet Respir. Med., 4, 797-806, doi: https://doi.org/10.1016/S2213-2600(16)30227-2.

    Article  CAS  PubMed  Google Scholar 

  87. Wenzel, S. E., Barnes, P. J., Bleecker, E. R., Bousquet, J., Busse, W., Dahlén, S. E., Holgate, S. T., Meyers, D. A., Rabe, K. F., Antczak, A., Baker, J., Horvath, I., Mark, Z., Bernstein, D., Kerwin, E., Schlenker-Herceg, R., Lo, K. H., Watt, R., Barnathan, E. S., and Chanez, P. (2009) A randomized, double-blind, placebo-controlled study of tumor necrosis factor-a blockade in severe persistent asthma, Am. J. Respir. Crit. Care Med., 179, 549-558, doi: https://doi.org/10.1164/rccm.200809-1512OC.

    Article  CAS  PubMed  Google Scholar 

  88. Morjaria, J. B., Chauhan, A. J., Babu, K. S., Polosa, R., Davies, D. E., and Holgate, S. T. (2008) The role of a soluble TNFα receptor fusion protein (etanercept) in corticosteroid refractory asthma: a double blind, randomised, placebo controlled trial, Thorax, 63, 584-591, doi: https://doi.org/10.1136/thx.2007.086314.

    Article  CAS  PubMed  Google Scholar 

  89. Michel, O., Dinh, P. H. D., Doyen, V., and Corazza, F. (2014) Anti-TNF inhibits the Airways neutrophilic inflammation induced by inhaled endotoxin in human, BMC Pharmacol. Toxicol., 15, 1-10, doi: https://doi.org/10.1186/2050-6511-15-60.

    Article  CAS  Google Scholar 

  90. Busse, W. W., Holgate, S., Kerwin, E., Chon, Y., Feng, J., Lin, J., and Lin, S. (2013) Randomized, double-blind, placebo-controlled study of Brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma, Am. J. Respir. Crit. Care Med., 188, 1294-1302, doi: https://doi.org/10.1164/rccm.201212-2318OC.

    Article  CAS  PubMed  Google Scholar 

  91. NCT03299686 (2019) Study to assess the efficacy and safety of CJM112 in patients with inadequately controlled severe asthma.

  92. Hernandez, M. L., Mills, K., Almond, M., Todoric, K., Aleman, M. M., Zhang, H., Zhou, H., and Peden, D. B. (2015) IL-1 receptor antagonist reduces endotoxin-induced airway inflammation in healthy volunteers, J. Allergy Clin. Immunol., 135, 379-385, doi: https://doi.org/10.1016/j.jaci.2014.07.039.

    Article  CAS  PubMed  Google Scholar 

  93. NCT02443298 (2018) Efficacy and safety of BI 655066/ABBV-066 (Risankizumab) in patients with severe persistent asthma.

  94. Cahill, K. N., Katz, H. R., Cui, J., Lai, J., Kazani, S., Crosby-Thompson, A., Garofalo, D., Castro, M., Jarjour, N., DiMango, E., Erzurum, S., Trevor, J. L., Shenoy, K., Chinchilli, V. M., Wechsler, M. E., Laidlaw, T. M., Boyce, J. A., and Israel, E. (2017) KIT inhibition by imatinib in patients with severe refractory asthma, N. Engl. J. Med., 376, 1911-1920, doi: https://doi.org/10.1056/NEJMoa1613125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Simpson, J. L., Powell, H., Boyle, M. J., Scott, R. J., and Gibson, P. G. (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma, Am. J. Respir. Crit. Care Med., 177, 148-155, doi: https://doi.org/10.1164/rccm.200707-1134OC.

    Article  CAS  PubMed  Google Scholar 

  96. Gibson, P. G., Yang, I. A., Upham, J. W., Reynolds, P. N., Hodge, S., James, A. L., Jenkins, C., Peters, M. J., Marks, G. B., Baraket, M., Powell, H., Taylor, S. L., Leong, L. E. X., Rogers, G. B., and Simpson, J. L. (2017) Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial, Lancet, 390, 659-668, doi: https://doi.org/10.1016/S0140-6736(17)31281-3.

    Article  CAS  PubMed  Google Scholar 

  97. Bardin, P., Kanniess, F., Gauvreau, G., Bredenbröker, D., and Rabe, K. F. (2015) Roflumilast for asthma: efficacy findings in mechanism of action studies, Pulm. Pharmacol. Ther., 35, 4-10, doi: https://doi.org/10.1016/j.pupt.2015.08.006.

    Article  CAS  Google Scholar 

  98. Meltzer, E. O., Chervinsky, P., Busse, W., Ohta, K., Bardin, P., Bredenbröker, D., and Bateman, E. D. (2015) Roflumilast for asthma: efficacy findings in placebo-controlled studies, Pulm. Pharmacol. Ther., 35, 20-27, doi: https://doi.org/10.1016/j.pupt.2015.10.006.

    Article  CAS  Google Scholar 

  99. Bateman, E. D., Bousquet, J., Aubier, M., Bredenbröker, D., and O’Byrne, P. M. (2015) Roflumilast for asthma: efficacy findings in non-placebo-controlled comparator and dosing studies, Pulm. Pharmacol. Ther., 35, 11-19, doi: https://doi.org/10.1016/j.pupt.2015.10.002.

    Article  CAS  Google Scholar 

  100. Rabe, K. F., Calverley, P. M. A., Martinez, F. J., and Fabbri, L. M. (2017) Effect of roflumilast in patients with severe COPD and a history of hospitalisation, Eur. Respir. J., 50, 1-4, doi: https://doi.org/10.1183/13993003.00158-2017.

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. MD-1578.2019.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Shilovskiy.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovskiy, I.P., Nikolskii, A.A., Kurbacheva, O.M. et al. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. Biochemistry Moscow 85, 854–868 (2020). https://doi.org/10.1134/S0006297920080027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920080027

Keywords

Navigation