Skip to main content
Log in

The Role of P-Glycoprotein in Decreasing Cell Membranes Permeability during Oxidative Stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

P-Glycoprotein (P-gp) is one of the most clinically significant representatives of the ABC transporter superfamily due to its participation in the transport of biotic components and xenobiotics across the plasma membrane. It is known that various chemicals, environmental factors, and pathological processes can affect P-gp activity and expression. In this study, we investigated the role of P-gp in limiting the cell membrane permeability during oxidative stress. Human adenocarcinoma colon cells (Caco-2) overexpressing P-gp were cultured for 72 h in the medium containing hydrogen peroxide (0.1-50 µM). The transport of the P-gp substrate fexofenadine was evaluated in a special Transwell system. The amounts of P-gp and Nrf2 transcription factor were analyzed by the enzyme-linked immunosorbent assay. The concentration of SH-groups in proteins and the contents of lipid peroxidation products and protein carbonyl derivatives were determined spectrophotometrically. Hydrogen peroxide at a concentration of 0.1-5 µM did not significantly affect the studied parameters, while incubation with 10 µM H2O2 decreased in the level of SH groups in cell lysates and increased in the amount of Nrf2 in the cell lysates. Nrf2, in its turn, mediated an increase in the content and activity of the P-gp transporter, thus limiting the increasing permeability of the cell membrane. Hydrogen peroxide at a concentration of 50 µM promoted oxidative stress, which was manifested as a decrease in the content of SH-groups, increase in the concentration of lipid peroxidation products and protein carbonyl derivatives, and decrease in the P-gp level, which led to a significantly increased permeability of the plasma membrane. These results show that the transport and protective roles of P-gp, in particular, reduction of the cell membrane permeability, are affected by the intensity of oxidative stress and can be manifested only if the extent of membrane damage is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

Caco-2:

human adenocarcinoma colon cells

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

ELISA:

enzyme-linked immunosorbent assay

HPLC:

high-performance liquid chromatography

LPO:

lipid peroxidation

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Nrf2:

nuclear factor erythroid 2-related factor 2

OD:

optical density

P-gp:

P-glycoprotein

ROS:

reactive oxygen species

UV:

ultraviolet

References

  1. Davidson, A. L. (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems, Microbiol. Mol. Biol. Rev., 72, 317-364, https://doi.org/10.1128/MMBR.00031-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vasiliou, V., Vasiliou, K., and Nebert, D. W. (2009) Human ATP-binding cassette (ABC) transporter family, Hum. Genomics, 3, 281-290, https://doi.org/10.1186/1479-7364-3-3-281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Licht, A., and Schneider, E. (2011) ATP binding cassette systems: Structures, mechanisms, and functions, Cent. Eur. J. Biol., 6, 785-801, https://doi.org/10.2478/s11535-011-0054-4.

    Article  CAS  Google Scholar 

  4. Esser, L., Zhou, F., Pluchino, K. M., Shiloach, J., Ma, J., et al. (2017) Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity, J. Biol. Chem., 292, 446-461, https://doi.org/10.1074/jbc.M116.755884.

    Article  CAS  PubMed  Google Scholar 

  5. Sharom, F. J. (2011) The P-glycoprotein multidrug transporter, Essays Biochem., 50, 161-178, https://doi.org/10.1042/bse0500161.

    Article  CAS  PubMed  Google Scholar 

  6. Yakusheva, E. N., and Titov, D. S. (2018) Structure and function of multidrug resistance protein 1, Biochemistry (Moscow), 83, 907-929, https://doi.org/10.1134/S0006297918080047.

    Article  CAS  Google Scholar 

  7. Kukes, V. G., Grachev, S. V., Sychev, D. A., and Ramenskaya, G. V. (2008) Metabolism of Drugs. Scientific Basis of Personalized Medicine: Guide for Doctors, Geotar-Media, Moscow.

  8. Juliano, R. L., and Ling, V. (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants, Biochim. Biophis. Acta, 455, 155-162, https://doi.org/10.1016/0005-2736(76)90160-7.

    Article  Google Scholar 

  9. Pokharel, D., Roseblade, A., Oenarto, V., Lu, J. F., and Bebawy, M. (2017) Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer, Ecancermedicalscience, 11, e768, https://doi.org/10.3332/ecancer.2017.768.

    Article  Google Scholar 

  10. Borst, P., and Schinkel, A. H. (2013) P-glycoprotein ABCB1: a major player in drug handling by mammals, J. Clin. Invest., 23, 4131-4133, https://doi.org/10.1172/JCI70430.

    Article  CAS  Google Scholar 

  11. Yano, K., Tomono, T., and Ogihara, T. (2018) Advances in studies of P-glycoprotein and its expression regulators, Biol. Pharm. Bull., 41, 11-19, https://doi.org/10.1248/bpb.b17-00725.

    Article  CAS  PubMed  Google Scholar 

  12. Van der Paal, J., Neyts, E. C., Verlackt, C. C. W., and Bogaerts, A. (2016) Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress, Chem. Sci., 7, 489-498, https://doi.org/10.1039/C5SC02311D.

    Article  CAS  PubMed  Google Scholar 

  13. Raghunath, A., Sundarraj, K., Nagarajan, R., Arfuso, F., Bian, J., et al. (2018) Antioxidant response elements: discovery, classes, regulation and potential applications, Redox. Biol., 17, 297-314, https://doi.org/10.1016/j.redox.2018.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, B., Li, H. X., Lian, J., Guo, Y. J., Tang, Y. H., et al. (2019) Nrf2 overexpression protects against paraquat induced A549 cell injury primarily by upregulating P glycoprotein and reducing intracellular paraquat accumulation, Exp. Ther. Med., 17, 1240-1247, https://doi.org/10.3892/etm.2018.7044.

    Article  CAS  PubMed  Google Scholar 

  15. Yakusheva, E. N., Shchulkin, A. V., Chrnykh, I. V., Popova, N. M., Kotlyarova, A. A., and Slepnev, A. A. (2019) Assessment of drugs belonging to inhibitors and inductors of p-glycoprotein in vitro, Obz. Klin. Biokhim. Lekkarst. Ter., 17, 71-78, https://doi.org/10.7816/RCF17171-78.

    Article  Google Scholar 

  16. Tolosa, L., Donato, M. T., and Gómez-Lechón, M. J. (2015) General cytotoxicity assessment by means of the MTT assay, Methods Mol. Biol., 1250, 333-348, https://doi.org/10.1007/978-1-4939-2074-7_26.

    Article  CAS  PubMed  Google Scholar 

  17. Tinnikov, A. A., and Samuels, H. H. (2013) A novel cell lysis approach reveals that caspase-2 rapidly translocates from the nucleus to the cytoplasm in response to apoptotic stimuli, PLoS One, 8, e61085, https://doi.org/10.1371/journal.pone.0061085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boschi-Muller, S., Azza, S., Sanglier-Cianferani, S., Talfournier, F., Dorsselear, A. V., and Branlant, G. (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli, J. Biol. Chem., 275, 35908-35913, https://doi.org/10.1074/jbc.M006137200.

    Article  CAS  PubMed  Google Scholar 

  19. Ellman, L. G. (1959) Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70-77, https://doi.org/10.1016/0003-9861(59)90090-6.

    Article  CAS  PubMed  Google Scholar 

  20. Gérard-Monnier, D., Erdelmeier, I., Régnard, K., Moze-Henry, N., Yadan, J. C., Chaudière, J. (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation, Chem. Res. Toxicol., 11, 1176-1183, https://doi.org/10.1021/tx9701790.

    Article  PubMed  Google Scholar 

  21. Weber, D., Davies, M. J., and Grunea, T. (2015) Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions, Redox Biol., 5, 367-380, https://doi.org/10.1016/j.redox.2015.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petri, N., Tannergren, C., Rungstad, D., and Lennernäs, H. (2004) Transport Characteristics of Fexofenadine in the Caco-2 Cell Model, Pharmac. Res., 21, 1398-1404, https://doi.org/10.1023/B:PHAM.0000036913.90332.b1.

    Article  CAS  Google Scholar 

  23. Elsby, R., Surry, D. D., Smith, V. N., and Gray, A. J. (2008) Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions, Xenobiotica, 38, 1140-1164, https://doi.org/10.1080/00498250802050880.

    Article  CAS  PubMed  Google Scholar 

  24. Erokhina, P. D., Abalenikhina, Yu. V., Shchulkin, A. V., Chrnykh, I. V., Popova, N. M., et al. (2020) Investigation of the effect of progesterone on activity of P-glycoprotein in vitro, I. P. Pavlov Rus. Med. Biol. Herald, 28, 135-142, https://doi.org/10.23888/PAVLOVJ2020282135-142.

    Article  Google Scholar 

  25. Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L. A., and Seliger, B. (2015) Hydrogen peroxide – production, fate and role in redox signaling of tumor cells, Cell Commun. Signal., 13, e39, https://doi.org/10.1186/s12964-015-0118-6.

    Article  CAS  Google Scholar 

  26. Thakkar, N., Slizgi, J. R., and Brouwer, K. L. R. (2017) Effect of liver disease on hepatic transporter expression and function, J. Pharm Sci., 106, 2282-2294, https://doi.org/10.1016/j.xphs.2017.04.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grewal, G. K., Kukal, S., Kanojia, N., Saso, L., Kukreti, Sh., and Kukreti, R. (2017) Effect of oxidative stress on ABC transporters: contribution to epilepsy pharmacoresistance, Molecules, 22, e365, https://doi.org/10.3390/molecules22030365.

    Article  CAS  PubMed  Google Scholar 

  28. Aryal, M., Fischer, K., Gentile, C., Gitto, S., Zhang, Y.-Z., and McDannold, N. (2017) Effects on P-glycoprotein expression after blood-brain barrier disruption using focused ultrasound and microbubbles, PLoS One, 3, e0166061, https://doi.org/10.1371/journal.pone.0166061.

    Article  CAS  Google Scholar 

  29. Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y., Leonhardt, N., et al. (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure, Proc. Natl. Acad. Sci. USA, 114, 9200-9205, https://doi.org/10.1073/pnas.1704754114.

    Article  CAS  PubMed  Google Scholar 

  30. Sies, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress, Redox Biol., 11, 613-619, https://doi.org/10.1016/j.redox.2016.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smirnoff, N., and Arnaud, D. (2019) Hydrogen peroxide metabolism and functions in plants, New Phytol., 2, 1197-1214, https://doi.org/10.1111/nph.15488.

    Article  CAS  Google Scholar 

  32. Vogelsang, L., and Dietz, K.-J. (2020) Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants, Biochem. J., 477, 1865-1878, https://doi.org/10.1042/BCJ20190124.

    Article  PubMed  Google Scholar 

  33. Poole, L. B. (2015) The basics of thiols and cysteines in redox biology and chemistry, Free Radic. Biol. Med., 1, 148-157, https://doi.org/10.1016/j.freeradbiomed.2014.11.013.

    Article  CAS  Google Scholar 

  34. Kang, K. A., and Hyun, J. W. (2017) Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance, Toxicol. Res., 33, 1-5, https://doi.org/10.5487/TR.2017.33.1.001.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wen, Zh., Liu, W., Li, X., Chen, W., Liu, J., et al. (2019) A protective role of the NRF2-Keap1 pathway in maintaining intestinal barrier function, Oxid. Med. Cell Longev., 2019, e1759149, https://doi.org/10.1155/2019/1759149.

    Article  CAS  Google Scholar 

  36. Itri, R., Junqueira, H. C., Mertins, O., and Baptista, M. S. (2014) Membrane changes under oxidative stress: the impact of oxidized lipids, Biophys. Rev., 6, 47-61, https://doi.org/10.1007/s12551-013-0128-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon, D. S., Choi, Y., and Lee, J. W. (2016) Cellular localization of NRF2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53–SIRT1 axis, Cell Death Dis., 7, e2093, https://doi.org/10.1038/cddis.2016.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fromm, M. F. (2004) Importance of P-glycoprotein at blood-tissue barriers, Trends Pharmacol. Sci., 25, 423-429, https://doi.org/10.1016/j.tips.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, G.-X., Wang, D.-W., Liu, Y., and Ma, Y.-H. (2016) Intractable epilepsy and the P-glycoprotein hypothesis, Int. J. Neurosci., 126, 385-392, https://doi.org/10.3109/00207454.2015.1038710.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Grant from the President of the Russian Federation for Support of Young Scientists (project no. MK-1856.2020.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Shchulkin.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchulkin, A.V., Abalenikhina, Y.V., Erokhina, P.D. et al. The Role of P-Glycoprotein in Decreasing Cell Membranes Permeability during Oxidative Stress. Biochemistry Moscow 86, 197–206 (2021). https://doi.org/10.1134/S0006297921020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921020085

Keywords

Navigation