Skip to main content
Log in

Sphingolipid Metabolism in Tumor Cells

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

ARS:

arylsulfatase

Cer:

ceramide

CERase:

ceramidase

CERK:

ceramide kinase

CERS:

ceramide synthase

CST:

cerebroside sulfotransferase

CERT:

ceramide transporter

C1P:

ceramide-1-phosphate

DEGS:

dihydroceramide desaturase

dhCer:

dihydroceramide

dhS1P:

dihydrosphingosine-1-phosphate

ER:

endoplasmic reticulum

GalCer:

galactosylceramide

GALC:

galactosyl ceramidase

GalCERS:

galactosylcerebroside synthase

GluCer:

glucosylceramide

GluCERase:

glucosylceramidase

GluCERS:

glucosylcerebroside synthase

PA:

phosphatidic acid

SGPP:

sphingosine-1-phosphate phosphatase

SM:

sphingomyelin

SMase:

sphingomyelinase

SMS:

sphingomyelin synthase

Sph:

sphingosine

SPHK:

sphingosine kinase

S1P:

sphingosine-1-phosphate

S1PL:

sphingosine-1-phosphate lyase

TNF-α:

tumor necrosis factor α

References

  1. Li, R. Z., Wang, X. R., Wang, J., Xie, C., Wang, X. X., Pan, H. D., Meng, W. Y., Liang, T. L., Li, J. X., Yan, P. Y., Wu, Q. B., Liu, L., Yao, X. J., and Leung, E. L. (2022) The key role of Sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance, Front. Oncol., 27, 941643, https://doi.org/10.3389/fonc.2022.941643.

    Article  CAS  Google Scholar 

  2. Lin, M., Li, Y., Wang, S., Cao, B., Li, C., and Li, G. (2022) Sphingolipid metabolism and signaling in lung cancer: a potential therapeutic target, J. Oncol., 28, 9099612, https://doi.org/10.1155/2022/9099612.

    Article  CAS  Google Scholar 

  3. Pal, P., Atilla-Gokcumen, G. E., and Frasor, J. (2022) Emerging roles of ceramides in breast cancer biology and therapy, Int. J. Mol. Sci., 23, 11178, https://doi.org/10.3390/ijms231911178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pherez-Farah, A., López-Sánchez, R. D. C., Villela-Martínez, L. M., Ortiz-López, R., Beltrán, B. E., and Hernández-Hernández, J. A. (2022) Sphingolipids and lymphomas: a double-edged sword, Cancers (Basel), 14, 2051, https://doi.org/10.3390/cancers14092051.

    Article  CAS  PubMed  Google Scholar 

  5. Byrne, F. L., Olzomer, E. M., Lolies, N., Hoehn, K. L., and Wegner, M. S. (2022) Update on glycosphingolipids abundance in hepatocellular carcinoma, Int. J. Mol. Sci., 23, 4477, https://doi.org/10.3390/ijms23094477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaibaq, F., Dowdy, T., and Larion, M. (2022) Targeting the sphingolipid rheostat in gliomas, Int. J. Mol. Sci., 23, 9255, https://doi.org/10.3390/ijms23169255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sukocheva, O. A., Furuya, H., Ng, M. L., Friedemann, M., Menschikowski, M., Tarasov, V. V., Chubarev, V. N., Klochkov, S. G., Neganova, M. E., Mangoni, A. A., Aliev, G., and Bishayee, A. (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target, Pharmacol. Ther., 207, 107464, https://doi.org/10.1016/j.pharmthera.2019.107464.

    Article  CAS  PubMed  Google Scholar 

  8. Camacho, L., Ouro, A., Gomez-Larrauri, A., Carracedo, A., and Gomez-Muñoz, A. (2022) Implication of ceramide kinase/C1P in cancer development and progression, Cancers (Basel), 14, 227, https://doi.org/10.3390/cancers14010227.

    Article  CAS  PubMed  Google Scholar 

  9. Belleri, M., Chiodelli, P., Corli, M., Capra, M., and Presta, M. (2022) Oncosuppressive and oncogenic activity of the sphingolipid-metabolizing enzyme β-galactosylceramidase, Biochim. Biophys. Acta Rev. Cancer, 1877, 188675, https://doi.org/10.1016/j.bbcan.2021.188675.

    Article  CAS  PubMed  Google Scholar 

  10. Ogretmen, B. (2017) Sphingolipid metabolism in cancer signalling and therapy, Nat. Rev. Cancer, 18, 33-50, https://doi.org/10.1038/nrc.2017.96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zelnik, I. D., Rozman, B., Rosenfeld-Gur, E., Ben-Dor, S., and Futerman, A. H. (2019) A stroll down the CerS lane, Adv. Exp. Med. Biol., 1159, 49-63, https://doi.org/10.1007/978-3-030-21162-2_4.

    Article  CAS  PubMed  Google Scholar 

  12. Stiban, J., Tidhar, R., and Futerman, A. H. (2010) Ceramide synthases: roles in cell physiology and signaling, Adv. Exp. Med. Biol., 688, 60-71, https://doi.org/10.1007/978-1-4419-6741-1_4.

    Article  CAS  PubMed  Google Scholar 

  13. Stiban, J., Fistere, D., and Colombini, M. (2006) Dihydroceramide hinders ceramide channel formation: implications on apoptosis, Apoptosis, 11, 773-780, https://doi.org/10.1007/s10495-006-5882-8.

    Article  CAS  PubMed  Google Scholar 

  14. Lachkar, F., Ferré, P., Foufelle, F., and Papaioannou, A. (2021) Dihydroceramides: their emerging physiological roles and functions in cancer and metabolic diseases, Am. J. Physiol. Endocrinol. Metab., 320, E122-E130, https://doi.org/10.1152/ajpendo.00330.2020.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M., and Merrill, A. H., Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy, Biochim. Biophys. Acta, 1758, 1864-1884, https://doi.org/10.1016/j.bbamem.2006.08.009.

    Article  CAS  PubMed  Google Scholar 

  16. Breen, P., Joseph, N., Thompson, K., Kraveka, J. M., Gudz, T. I., Li, L., Rahmaniyan, M., Bielawski, J., Pierce, J. S., Van Buren, E., Bhatti, G., and Separovic, D. (2013) Dihydroceramide desaturase knockdown impacts sphingolipids and apoptosis after photodamage in human head and neck squamous carcinoma cells, Anticancer Res., 33, 77-84.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Casasampere, M., Ordoñez, Y. F., Pou, A., and Casas, J. (2016) Inhibitors of dihydroceramide desaturase 1: therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology, Chem. Phys. Lipids, 197, 33-44, https://doi.org/10.1016/j.chemphyslip.2015.07.025.

    Article  CAS  PubMed  Google Scholar 

  18. Guo, W., Zhang, C., Feng, P., Li, M., Wang, X., Xia, Y., Chen, D., and Li, J. (2021) M6A methylation of DEGS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis, Oncogene, 40, 5913-5924, https://doi.org/10.1038/s41388-021-01987-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernández-Tiedra, S., Fabriàs, G., Dávila, D., Salanueva, Í. J., Casas, J., Montes, L. R., Antón, Z., García-Taboada, E., Salazar-Roa, M., Lorente, M., Nylandsted, J., Armstrong, J., López-Valero, I., McKee, C. S., Serrano-Puebla, A., García-López, R., González-Martínez, J., Abad, J. L., Hanada, K., Boya, P., and Velasco, G. (2016) Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization, Autophagy, 12, 2213-2229, https://doi.org/10.1080/15548627.2016.1213927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001) CD95 signaling via ceramide-rich membrane rafts, J. Biol. Chem., 276, 20589-20596, https://doi.org/10.1074/jbc.M101207200.

    Article  CAS  PubMed  Google Scholar 

  21. Crivelli, S. M., Giovagnoni, C., Zhu, Z., Tripathi, P., Elsherbini, A., Quadri, Z., Pu, J., Zhang, L., Ferko, B., Berkes, D., Spassieva, S. D., Martinez-Martinez, P., and Bieberich, E. (2022) Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles, J. Extracell. Vesicles, 11, e12233, https://doi.org/10.1002/jev2.12233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giussani, P., Colleoni, T., Brioschi, L., Bassi, R., Hanada, K., Tettamanti, G., Riboni, L., and Viani, P. (2008) Ceramide traffic in C6 glioma cells: evidence for CERT-dependent and independent transport from ER to the Golgi apparatus, Biochim. Biophys. Acta, 1781, 40-51, https://doi.org/10.1016/j.bbalip.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, W., Wu, C., Chen, Y., Guo, Y., Qiu, L., Liu, Z., Sun, H., Chen, S., An, Z., Zhang, Z., Li, Y., and Li, L. (2021) Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress, Int. J. Oral Sci., 13, 10, https://doi.org/10.1038/s41368-021-00118-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fekry, B., Jeffries, K. A., Esmaeilniakooshkghazi, A., Ogretmen, B., Krupenko, S. A., and Krupenko, N. I. (2016) CerS6 is a novel transcriptional target of p53 protein activated by non-genotoxic stress, J. Biol. Chem., 291, 16586-16596, https://doi.org/10.1074/jbc.M116.716902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. White-Gilbertson, S., Mullen, T., Senkal, C., Lu, P., Ogretmen, B., Obeid, L., and Voelkel-Johnson, C. (2009) Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells, Oncogene, 28, 1132-1141, https://doi.org/10.1038/onc.2008.468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jensen, S. A., Calvert, A. E., Volpert, G., Kouri, F. M., Hurley, L. A., Luciano, J. P., Wu, Y., Chalastanis, A., Futerman, A. H., and Stegh, A. H. (2014) Bcl2L13 is a ceramide synthase inhibitor in glioblastoma, Proc. Natl Acad. Sci. USA, 111, 5682-5687, https://doi.org/10.1073/pnas.1316700111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H., He, B., and Ke, F. (2022) Ceramide synthase 6 mediates triple-negative breast cancer response to chemotherapy through RhoA- and EGFR-mediated signaling pathways, J. Breast Cancer, 25, 500-512, https://doi.org/10.4048/jbc.2022.25.e47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Senkal, C. E., Ponnusamy, S., Manevich, Y., Meyers-Needham, M., Saddoughi, S. A., Mukhopadyay, A., Dent, P., Bielawski, J., and Ogretmen, B. (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network, J. Biol. Chem., 286, 42446-42458, https://doi.org/10.1074/jbc.M111.287383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schiffmann, S., Sandner, J., Birod, K., Wobst, I., Angioni, C., Ruckhäberle, E., Kaufmann, M., Ackermann, H., Lötsch, J., Schmidt, H., Geisslinger, G., and Grösch, S. (2009) Ceramide synthases and ceramide levels are increased in breast cancer tissue, Carcinogenesis, 30, 745-752, https://doi.org/10.1093/carcin/bgp061.

    Article  CAS  PubMed  Google Scholar 

  30. Karahatay, S., Thomas, K., Koybasi, S., Senkal, C. E., Elojeimy, S., Liu, X., Bielawski, J., Day, T. A., Gillespie, M. B., Sinha, D., Norris, J. S., Hannun, Y. A., and Ogretmen, B. (2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis, Cancer Lett., 256, 101-111, https://doi.org/10.1016/j.canlet.2007.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tallima, H., Azzazy, H. M. E., and El Ridi, R. (2021) Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion, Lipids Health Dis., 20, 150, https://doi.org/10.1186/s12944-021-01581-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jing, F., Jing, C., Dai, X., Zhou, G., Di, S., Bi, X., Dai, T., Qin, T., and Hong, L. (2021) Sphingomyelin synthase 2 but not sphingomyelin synthase 1 is upregulated in ovarian cancer and involved in migration, growth, and survival via different mechanisms, Am. J. Transl. Res., 13, 4412-4421.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, K., Chen, Z., Feng, H., Chen, Y., Zhang, C., Yu, J., Luo, Y., Zhao, L., Jiang, X., and Shi, F. (2019) Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin, Cell Death Dis., 10, 157, https://doi.org/10.1038/s41419-019-1303-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahiya, R., Boyle, B., Goldberg, B. C., Yoon, W. H., Konety, B., Chen, K., Yen, T. S., Blumenfeld, W., and Narayan, P. (1992) Metastasis-associated alterations in phospholipids and fatty acids of human prostatic adenocarcinoma cell lines, Biochem. Cell Biol., 70, 548-554, https://doi.org/10.1139/o92-085.

    Article  CAS  PubMed  Google Scholar 

  35. Li, Z., Hailemariam, T. K., Zhou, H., Li, Y., Duckworth, D. C., Peake, D. A., Zhang, Y., Kuo, M. S., Cao, G., and Jiang, X. C. (2007) Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1771, 1186-1194, https://doi.org/10.1016/j.bbalip.2007.05.007.

    Article  CAS  Google Scholar 

  36. Tafesse, F. G., Huitema, K., Hermansson, M., van der Poel, S., van den Dikkenberg, J., Uphoff, A., Somerharju, P., and Holthuis, J. C. (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells, J. Biol. Chem., 282, 17537-17547, https://doi.org/10.1074/jbc.M702423200.

    Article  CAS  PubMed  Google Scholar 

  37. Van der Luit, A. H., Budde, M., Zerp, S., Caan, W., Klarenbeek, J. B., Verheij, M., and Van Blitterswijk, W. J. (2007) Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated Sphingomyelin synthase 1 expression with consequent Sphingomyelin- and cholesterol-deficiency in lipid rafts, Biochem. J., 401, 541-549, https://doi.org/10.1042/BJ20061178.

    Article  CAS  PubMed  Google Scholar 

  38. Itoh, M., Kitano, T., Watanabe, M., Kondo, T., Yabu, T., Taguchi, Y., Iwai, K., Tashima, M., Uchiyama, T., and Okazaki, T. (2003) Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and Sphingomyelin synthase in chemoresistant leukemia, Clin. Cancer Res., 9, 415-423.

    CAS  PubMed  Google Scholar 

  39. Beier, U. H., and Görögh, T. (2005) Implications of galactocerebrosidase and galactosylcerebroside metabolism in cancer cells, Int. J. Cancer, 115, 6-10, https://doi.org/10.1002/ijc.20851.

    Article  CAS  PubMed  Google Scholar 

  40. Reza, S., Ugorski, M., and Suchański, J. (2021) Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease, Glycobiology, 31, 1416-1434, https://doi.org/10.1093/glycob/cwab046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. García-Barros, M., Coant, N., Truman, J. P., Snider, A. J., and Hannun, Y. A. (2014) Sphingolipids in colon cancer, Biochim. Biophys. Acta, 1841, 773-782, https://doi.org/10.1016/j.bbalip.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y. Y., Gupta, V., Patwardhan, G. A., Bhinge, K., Zhao, Y., Bao, J., Mehendale, H., Cabot, M. C., Li, Y. T., and Jazwinski, S. M. (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling, Mol. Cancer, 9, 145, https://doi.org/10.1186/1476-4598-9-145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joshi, P. G., and Mishra, S. (1992) Galactocerebroside mediates Ca2+ signaling in cultured glioma cells, Brain Res., 597, 108-113, https://doi.org/10.1016/0006-8993(92)91511-c.

    Article  CAS  PubMed  Google Scholar 

  44. Pokrovskiy V. S. (2023) Human biochemistry. Lipid turnover: a manual [in Russian], Moskva, E-noto, pp.496.

  45. Lavie, Y., Cao, H., Bursten, S. L., Giuliano, A. E., and Cabot, M. C. (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells, J. Biol. Chem., 271, 19530-19536, https://doi.org/10.1074/jbc.271.32.19530.

    Article  CAS  PubMed  Google Scholar 

  46. Lucci, A., Cho, W. I., Han, T. Y., Giuliano, A. E., Morton, D. L., and Cabot, M. C. (1998) Glucosylceramide: a marker for multiple-drug resistant cancers, Anticancer Res., 18, 475-480.

    CAS  PubMed  Google Scholar 

  47. Russo, D., Parashuraman, S., and D’Angelo, G. (2016) Glycosphingolipid-protein interaction in signal transduction, Int. J. Mol. Sci., 17, 1732, https://doi.org/10.3390/ijms17101732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sasaki, N., Toyoda, M., and Ishiwata, T. (2021) Gangliosides as signaling regulators in cancer, Int. J. Mol. Sci., 22, 5076, https://doi.org/10.3390/ijms22105076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Maria, R., Lenti, L., Malisan, F., d'Agostino, F., Tomassini, B., Zeuner, A., Rippo, M. R., and Testi, R. (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis, Science, 277, 1652-1655, https://doi.org/10.1126/science.277.5332.1652.

    Article  CAS  PubMed  Google Scholar 

  50. Veldman, R. J., Klappe, K., Hinrichs, J., Hummel, I., van der Schaaf, G., Sietsma, H., and Kok, J. W. (2002) Altered Sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus, FASEB J., 16, 1111-1113, https://doi.org/10.1096/fj.01-0863fje.

    Article  CAS  PubMed  Google Scholar 

  51. Xiao, S., Finkielstein, C. V., and Capelluto, D. G. (2013) The enigmatic role of sulfatides: new insights into cellular functions and mechanisms of protein recognition, Adv. Exp. Med. Biol., 991, 27-40, https://doi.org/10.1007/978-94-007-6331-9_3.

    Article  CAS  PubMed  Google Scholar 

  52. Suchański, J., and Ugorski, M. (2016) The biological role of sulfatides, Postepy Hig. Med. Dosw. (Online), 70, 489-504, https://doi.org/10.5604/17322693.1201720.

    Article  PubMed  Google Scholar 

  53. Su, L., Athamna, M., Wang, Y., Wang, J., Freudenberg, M., Yue, T., Wang, J., Moresco, E. M. Y., He, H., Zor, T., and Beutler, B. (2021) Sulfatides are endogenous ligands for the TLR4-MD-2 complex, Proc. Natl. Acad. Sci. USA, 118, e2105316118, https://doi.org/10.1073/pnas.2105316118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takahashi, T., and Suzuki, T. (2012) Role of sulfatide in normal and pathological cells and tissues, J. Lipid Res., 53, 1437-1450, https://doi.org/10.1194/jlr.R026682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boath, A., Graf, C., Lidome, E., Ullrich, T., Nussbaumer, P., and Bornancin, F. (2008) Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin, J. Biol. Chem., 283, 8517-8526, https://doi.org/10.1074/jbc.M707107200.

    Article  CAS  PubMed  Google Scholar 

  56. Yamaji, T., and Hanada, K. (2014) Sphingolipid metabolism and interorganellar transport: localization of Sphingolipid enzymes and lipid transfer proteins, Traffic, 16, 101-122, https://doi.org/10.1111/tra.12239.

    Article  CAS  PubMed  Google Scholar 

  57. Baumruker, T., Bornancin, F., and Billich, A. (2005) The role of sphingosine and ceramide kinases in inflammatory responses, Immunol. Lett., 96, 175-185, https://doi.org/10.1016/j.imlet.2004.09.001.

    Article  CAS  PubMed  Google Scholar 

  58. Bhadwal, P., Dahiya, D., Shinde, D., Vaiphei, K., Math, R. G. H., Randhawa, V., and Agnihotri, N. (2020) LC-HRMS based approach to identify novel sphingolipid biomarkers in breast cancer patients, Sci. Rep., 10, 4668, https://doi.org/10.1038/s41598-020-61283-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rivera, I. G., Ordoñez, M., Presa, N., Gangoiti, P., Gomez-Larrauri, A., Trueba, M., Fox, T., Kester, M., and Gomez-Muñoz, A. (2016) Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells, Biochem. Pharmacol., 102, 107-119, https://doi.org/10.1016/j.bcp.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  60. Payne, A. W., Pant, D. K., Pan, T.-C., and Chodosh, L. A. (2014) Ceramide kinase promotes tumor cell survival and mammary tumor recurrence, Cancer Res., 74, 6352-6363, https://doi.org/10.1158/0008-5472.CAN-14-1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Canals, D., Perry, D. M., Jenkins, R. W., and Hannun, Y. A. (2011) Drug targeting of Sphingolipid metabolism: sphingomyelinases and ceramidases, Br. J. Pharmacol., 163, 694-712, https://doi.org/10.1111/j.1476-5381.2011.01279.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dyatlovitskaya, E. V., and Kandyba, A. G. (2006) Role of biologically active sphingolipids in tumor growth, Biochemistry (Moscow), 71, 10-17, https://doi.org/10.1134/s0006297906010020.

    Article  CAS  PubMed  Google Scholar 

  63. Pulkoski-Gross, M. J., Donaldson, J. C., and Obeid, L. M. (2015) Sphingosine-1-phoSphate metabolism: a structural perspective, Crit. Rev. Biochem. Mol. Biol., 50, 298-313, https://doi.org/10.3109/10409238.2015.1039115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takabe, K., and Spiegel, S. (2014) Export of sphingosine-1-phosphate and cancer progression, J. Lipid Res., 55, 1839-1846, https://doi.org/10.1194/jlr.R046656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hla, T., and Dannenberg, A. J. (2012) Sphingolipid signaling in metabolic disorders, Cell Metab., 16, 420-434, https://doi.org/10.1016/j.cmet.2012.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pyne, N. J., Tonelli, F., Lim, K. G., Long, J. S., Edwards, J., and Pyne, S. (2012) Sphingosine 1-phosphate signalling in cancer, Biochem. Soc. Transact., 40, 94-100, https://doi.org/10.1042/bst20110602.

    Article  CAS  Google Scholar 

  67. Sanchez, T., Skoura, A., Wu, M. T., Casserly, B., Harrington, E. O., and Hla, T. (2007) Induction of vascular permeability by the sphingosine-1-PhoSphate receptor-2 (S1p2r) and its downstream effectors ROCK and PTEN, Arterioscler. Thromb. Vasc. Biol., 27, 1312-1318, https://doi.org/10.1161/ATVBAHA.107.143735.

    Article  CAS  PubMed  Google Scholar 

  68. Cuvillier, O., and Levade, T. (2001) Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/Diablo from mitochondria, Blood J. Am. Soc. Hematol., 98, 2828-2836, https://doi.org/10.1182/blood.v98.9.2828.

    Article  CAS  Google Scholar 

  69. Ponnusamy, S., Selvam, S. P., Mehrotra, S., Kawamori, T., Snider, A. J., Obeid, L. M., Shao, Y., Sabbadini, R., and Ogretmen, B. (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis, EMBO Mol. Med., 4, 761-775, https://doi.org/10.1002/emmm.201200244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park, K. S., Kim, M. K., Lee, H. Y., Kim, S. D., Lee, S. Y., Kim, J. M., Ryu, S. H., and Bae, Y. S. (2007) S1p stimulates chemotactic migration and invasion in Ovcar3 ovarian cancer cells, Biochem. Biophys. Res. Commun., 356, 239-244, https://doi.org/10.1016/j.bbrc.2007.02.112.

    Article  CAS  PubMed  Google Scholar 

  71. Dyatlovitskaya, E. V., and Kandyba, A. G. (2006) Sphingolipids in tumor metastases and angiogenesis, Biochemistry (Moscow), 71, 347-353, https://doi.org/10.1134/s0006297906040018.

    Article  CAS  PubMed  Google Scholar 

  72. Pitson, S. M. (2011) Regulation of sphingosine kinase and sphingolipid signaling, Trends Biochem Sci., 36, 97-107, https://doi.org/10.1016/j.tibs.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  73. Dominguez, G., Maddelein, M. L., Pucelle, M., Nicaise, Y., Maurage, C. A., Duyckaerts, C., Cuvillier, O., and Delisle, M. B. (2018) Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain, Acta Neuropathol. Commun., 6, 25, https://doi.org/10.1186/s40478-018-0527-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, H., Haddadi, N., Zhu, X., Hatoum, D., Chen, S., Nassif, N. T., Lin, Y., and McGowan, E. M. (2022) Expression profile of sphingosine kinase 1 isoforms in human cancer tissues and cells: importance and clinical relevance of the neglected 1b-isoform, J. Oncol., 7, 2250407, https://doi.org/10.1155/2022/2250407.

    Article  CAS  Google Scholar 

  75. Haddadi, N., Lin, Y., Simpson, A. M., Nassif, N. T., and McGowan, E. M. (2017) “Dicing and Splicing” sphingosine kinase and relevance to cancer, Int. J. Mol. Sci., 18, 1891, https://doi.org/10.3390/ijms18091891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Diaz Escarcega, R., McCullough, L. D., and Tsvetkov, A. S. (2021) The functional role of sphingosine kinase 2, Front. Mol. Biosci., 8, 683767, https://doi.org/10.3389/fmolb.2021.683767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pyne, N. J. and Pyne, S. (2010) Sphingosine 1 phosphate and cancer, Nat. Rev. Cancer, 10, 489-503, https://doi.org/10.1038/nrc2875.

    Article  CAS  PubMed  Google Scholar 

  78. Kawamori, T., Kaneshiro, T., Okumura, M., Maalouf, S., Uflacker, A., Bielawski, J., Hannun, Y. A., and Obeid, L. M. (2009) Role for Sphingosine kinase 1 in colon carcinogenesis, FASEB J., 23, 405-414, https://doi.org/10.1096/fj.08-117572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peng, J., Chen, B., Shen, Z., Deng, H., Liu, D., Xie, X., Gan, X., Xu, X., Huang, Z., and Chen, J. (2015) DNA promoter hypermethylation 538 contributes to down-regulation of galactocerebrosidase gene 539 in lung and head and neck cancers, Int. J. Clin. Exp. Pathol., 8, 11042-11050.

    PubMed  PubMed Central  Google Scholar 

  80. Zhao, Y., Guo, Y., Wang, Z., Xiao, Z., Li, R., Luo, A., Wu, C., Jing, Z., Sun, N., Chen, X., Du, H., and Zeng, Y. (2015) GALC gene is downregulated by promoter hypermethylation in Epstein–Barr virus-associated nasopharyngeal carcinoma, Oncol. Rep., 34, 1369-1378, https://doi.org/10.3892/or.2015.4134.

    Article  CAS  PubMed  Google Scholar 

  81. Görögh, T., Rudert, H., Lippert, B. M., Gottschlich, S., Maune, S., Heidorn, K., Maass, J., Hoffmann, M., Meyer, J. E., Rathcke, I. O., Folz, B. J., Hortobagyi, T., and Werner, J. A. (1999) Transcriptional repression of the human galactocerebrosidase gene in squamous cell carcinomas of the larynx, Int. J. Cancer, 83, 750-754, https://doi.org/10.1002/(sici)1097-0215(19991210)83:6<750::aid-ijc9>3.0.co;2-v.

    Article  PubMed  Google Scholar 

  82. Sui, G., Affar, elB., Shi, Y., Brignone, C., Wall, N. R., Yin, P., Donohoe, M., Luke, M. P., Calvo, D., Grossman, S. R., and Shi, Y. (2004) Yin Yang 1 (YY1) is a negative regulator of p53, Cell, 117, 859-872, https://doi.org/10.1016/j.cell.2004.06.004.

    Article  CAS  PubMed  Google Scholar 

  83. Yakovleva, T., Kolesnikova, L., Vukojević, V., Gileva, I., Tan-No, K., Austen, M., Lüscher, B., Ekström, T. J., Terenius, L., and Bakalkin, G. (2004) YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription, Biochem. Biophys. Res. Commun., 318, 615-624, https://doi.org/10.1016/j.bbrc.2004.04.065.

    Article  CAS  PubMed  Google Scholar 

  84. Presta, M. (2021) β-Galactosylceramidase in cancer: friend or foe? Trends Cancer, 7, 974-977, https://doi.org/10.1016/j.trecan.2021.08.001.

    Article  CAS  PubMed  Google Scholar 

  85. Belleri, M., Paganini, G., Coltrini, D., Ronca, R., Zizioli, D., Corsini, M., Barbieri, A., Grillo, E., Calza, S., Bresciani, R., Maiorano, E., Mastropasqua, M. G., Annese, T., Giacomini, A., Ribatti, D., Casas, J., Levade, T., Fabrias, G., and Presta, M. (2020) β-Galactosylceramidase promotes melanoma growth via modulation of ceramide metabolism, Cancer Res., 80, 5011-5023, https://doi.org/10.1158/0008-5472.CAN-19-3382.

    Article  CAS  PubMed  Google Scholar 

  86. Barth, B. M., Shanmugavelandy, S. S., Tacelosky, D. M., Kester, M., Morad, S. A., and Cabot, M. C. (2013) Gaucher’s disease and cancer: a sphingolipid perspective, Crit. Rev. Oncog., 18, 221-234, https://doi.org/10.1615/critrevoncog.2013005814.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Henry, B., Ziobro, R., Becker, K. A., Kolesnick, R., and Gulbins, E. (2013) Acid sphingomyelinase, Handb. Exp. Pharmacol., 215, 77-88, https://doi.org/10.1007/978-3-7091-1368-4_4.

    Article  CAS  Google Scholar 

  88. Hertervig, E., Nilsson, A., Nyberg, L., and Duan, R. D. (1997) Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma, Cancer, 79, 448-453, https://doi.org/10.1002/(sici)1097-0142(19970201)79:3<448::aid-cncr4>3.0.co;2-e.

    Article  CAS  PubMed  Google Scholar 

  89. Demircan, B., Dyer, L. M., Gerace, M., Lobenhofer, E. K., Robertson, K. D., and Brown, K. D. (2009) Comparative epigenomics of human and mouse mammary tumors, Genes Chromosomes Cancer, 48, 83-97, https://doi.org/10.1002/gcc.20620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clarke, C. J. (2018) Neutral sphingomyelinases in cancer, Sphingolipids Cancer, 140, 97-119, https://doi.org/10.1016/bs.acr.2018.04.010.

    Article  CAS  Google Scholar 

  91. Revill, K., Wang, T., Lachenmayer, A., Kojima, K., Harrington, A., Li, J., Hoshida, Y., Llovet, J. M., and Powers, S. (2013) Powers genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma, Gastroenterology, 145, 1424-1435, https://doi.org/10.1053/j.gastro.2013.08.055.

    Article  CAS  PubMed  Google Scholar 

  92. Kim, W. J., Okimoto, R. A., Purton, L. E., Goodwin, M., Haserlat, S. M., Dayyani, F., Sweetser, D. A., McClatchey, A. I., Bernard, O. A., Look, A. T., Bell, D. W., Scadden, D. T., and Haber, D. A. (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias, Blood, 111, 4716-4722, https://doi.org/10.1182/blood-2007-10-113068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marchesini, N., and Hannun, Y. A. (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation, Biochem. Cell Biol., 82, 27-44, https://doi.org/10.1139/o03-091.

    Article  CAS  PubMed  Google Scholar 

  94. Megha, and London, E. (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function, J. Biol. Chem., 279, 9997-10004, https://doi.org/10.1074/jbc.M309992200.

    Article  CAS  PubMed  Google Scholar 

  95. Hannun, Y. A., and Obeid, L. M. (2018) Sphingolipids and their metabolism in physiology and disease, Nat. Rev. Mol. Cell Biol., 19, 175-191, https://doi.org/10.1038/nrm.2017.107.

    Article  CAS  PubMed  Google Scholar 

  96. Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Traylor, R. S., Gewirtz, D. A., and Grant, S. (1994) Induction of apoptotic DNA damage and cell death by activation of the Sphingomyelin pathway, Proc. Natl. Acad. Sci. USA, 91, 73-77, https://doi.org/10.1073/pnas.91.1.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aslan. M., Afsar, E., Kirimlioglu, E., Ceker, T., and Yilmaz, C. (2021) Antiproliferative effects of thymoquinone in MCF-7 breast and HepG2 liver cancer cells: possible role of ceramide and ER stress, Nutr. Cancer, 73, 460-472, https://doi.org/10.1080/01635581.2020.1751216.

    Article  CAS  PubMed  Google Scholar 

  98. Kilkus, J., Goswami, R., Testai, F. D., and Dawson, G. (2003) Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines, J. Neurosci. Res., 72, 65-75, https://doi.org/10.1002/jnr.10549.

    Article  CAS  PubMed  Google Scholar 

  99. Rotolo, J. A., Zhang, J., Donepudi, M., Lee, H., Fuks, Z., and Kolesnick, R. (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling, J. Biol. Chem., 280, 26425-26434, https://doi.org/10.1074/jbc.M414569200.

    Article  CAS  PubMed  Google Scholar 

  100. Ferranti, C. S., Cheng, J., Thompson, C., Zhang, J., Rotolo, J. A., Buddaseth, S., Fuks, Z., and Kolesnick, R. N. (2020) Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis, J. Cell Biol., 219, e201903176, https://doi.org/10.1083/jcb.201903176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clarke, C. J., Shamseddine, A. A., Jacob, J. J., Khalife, G., Burns, T. A., and Hannun, Y. A. (2016) ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation, J. Lipid Res., 57, 868-881, https://doi.org/10.1194/jlr.m067447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morad, S. A. and Cabot, M. C. (2013) Ceramide-orchestrated signalling in cancer cells, Nat. Rev. Cancer, 13, 51-65, https://doi.org/10.1038/nrc3398.

    Article  CAS  PubMed  Google Scholar 

  103. Tan, S. F., Liu, X., Fox, T. E., Barth, B. M., Sharma, A., Turner, S. D., Awwad, A., Dewey, A., Doi, K., Spitzer, B., Shah, M. V., Morad, S. A., Desai, D., Amin, S., Zhu, J., Liao, J., Yun, J., Kester, M., Claxton, D. F., Wang, H. G., and Loughran, T. P., Jr. (2016) Acid ceramidase is upregulated in AML and represents a novel therapeutic target, Oncotarget, 7, 83208-83222, https://doi.org/10.18632/oncotarget.13079.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Xu, R., Jin, J., Hu, W., Sun, W., Bielawski, J., Szulc, Z., Taha, T., Obeid, L. M., and Mao, C. (2006) Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P, FASEB J., 20, 1813-1825, https://doi.org/10.1096/fj.05-5689com.

    Article  CAS  PubMed  Google Scholar 

  105. Coant, N., Sakamoto, W., Mao, C., and Hannun, Y. A. (2017) Ceramidases, roles in sphingolipid metabolism and in health and disease, Adv. Biol. Regul., 63, 122-131, https://doi.org/10.1016/j.jbior.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  106. Maeda, I., Takano, T., Matsuzuka, F., Maruyama, T., Higashiyama, T., Liu, G., Kuma, K., and Amino, N. (1999) Rapid screening of specific changes in mRNA in thyroid carcinomas by sequence specific-differential display: decreased expression of acid ceramidase mRNA in malignant and benign thyroid tumors, Int. J. Cancer, 81, 700-704, https://doi.org/10.1002/(sici)1097-0215(19990531)81:5<700::aid-ijc5>3.0.co;2-d.

    Article  CAS  PubMed  Google Scholar 

  107. Roh, J. L., Park, J. Y., Kim, E. H., and Jang, H. J. (2016) Targeting acid ceramidase sensitises head and neck cancer to cisplatin, Eur. J. Cancer, 52, 163-172, https://doi.org/10.1016/j.ejca.2015.10.056.

    Article  CAS  PubMed  Google Scholar 

  108. Poterala-Hejmo, A., Golda, A., Pacholczyk, M., Student, S., Tylki-Szymańska, A., and Lalik, A. (2020) A possible role for arylsulfatase G in dermatan sulfate metabolism, Int. J. Mol. Sci., 21, 4913, https://doi.org/10.3390/ijms21144913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kolter, T., and Sandhoff, K. (2005) Principles of lysosomal membrane digestion: stimulation of Sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids, Annu. Rev. Cell Dev. Biol., 21, 81-103, https://doi.org/10.1146/annurev.cellbio.21.122303.120013.

    Article  CAS  PubMed  Google Scholar 

  110. Garcia, J., Callewaert, N., and Borsig, L. (2007) P-selectin mediates metastatic progression through binding to sulfatides on tumor cells, Glycobiology, 17, 185-196, https://doi.org/10.1093/glycob/cwl059.

    Article  CAS  PubMed  Google Scholar 

  111. Simonis, D., Schlesinger, M., Seelandt, C., Borsig, L., and Bendas, G. (2010) Analysis of SM4 sulfatide as a P-selectin ligand using model membranes, Biophys. Chem., 150, 98-104, https://doi.org/10.1016/j.bpc.2010.01.007.

    Article  CAS  PubMed  Google Scholar 

  112. Waggoner, D. W., Gómez-Muñoz, A., Dewald, J., and Brindley, D. N. (1996) Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate, J. Biol. Chem., 271, 16506-16509, https://doi.org/10.1074/jbc.271.28.16506.

    Article  CAS  PubMed  Google Scholar 

  113. Boudker, O., and Futerman, A. H. (1993) Detection and characterization of ceramide-1-phoSphate phosphatase activity in rat liver plasma membrane, J. Biol. Chem., 268, 22150-22155.

    Article  CAS  PubMed  Google Scholar 

  114. Long, J., Darroch, P., Wan, K. F., Kong, K. C., Ktistakis, N., Pyne, N. J., and Pyne, S. (2005) Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools, Biochem. J., 391, 25-32, https://doi.org/10.1042/BJ20050342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao, Y., Usatyuk, P. V., and Cummings, R. (2005) Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells, Biochem. J., 385, 493-502, https://doi.org/10.1042/BJ20041160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kihara, A., Mitsutake, S., Mizutani, Y., and Igarashi, Y. (2007) Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate, Prog. Lipid Res., 46, 126-144, https://doi.org/10.1016/j.plipres.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  117. Uranbileg, B., Kurano, M., Kano, K., Sakai, E., Arita, J., Hasegawa, K., Nishikawa, T., Ishihara, S., Yamashita, H., Seto, Y., Ikeda, H., Aoki, J., and Yatomi, Y. (2022) Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids, Clin. Transl. Med., 12, e1056, https://doi.org/10.1002/ctm2.1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hibbs, K., Skubitz, K. M., Pambuccian, S. E., Casey, R. C., Burleson, K. M., Oegema, T. R., Jr., Thiele, J. J., Grindle, S. M., Bliss, R. L., and Skubitz, A. P. (2004) Differential gene expression in ovarian carcinoma: identification of potential biomarkers, Am. J. Pathol., 165, 397-414, https://doi.org/10.1016/S0002-9440(10)63306-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Uranbileg, B., Ikeda, H., Kurano, M., Enooku, K., Sato, M., Saigusa, D., Aoki, J., Ishizawa, T., Hasegawa, K., Kokudo, N., and Yatomi, Y. (2016) Increased mRNA levels of sphingosine kinases and S1P lyase and reduced levels of S1P were observed in hepatocellular carcinoma in association with poorer differentiation and earlier recurrence, PloS One, 11, e0149462, https://doi.org/10.1371/journal.pone.0149462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Uranbileg, B., Nishikawa, T., Ikeda, H., Kurano, M., Sato, M., Saigusa, D., Aoki, J., Watanabe, T., and Yatomi, Y. (2018) Evidence suggests sphingosine 1-phosphate might be actively generated, degraded, and transported to extracellular spaces with increased S1P2 and S1P3 expression in colon cancer, Clin. Colorectal Cancer, 17, e171-e182, https://doi.org/10.1016/j.clcc.2017.11.004.

    Article  PubMed  Google Scholar 

  121. Oskouian, B., Sooriyakumaran, P., Borowsky, A. D., Crans, A., Dillard-Telm, L., Tam, Y. Y., Bandhuvula, P., and Saba, J. D. (2006) Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer, Proc. Natl. Acad. Sci. USA, 103, 17384-17389, https://doi.org/10.1073/pnas.0600050103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was carried out within the framework of the State Task of the RUDN University of the Ministry of Science and Higher Education no. 075-01551-23-00 (FSSF-2023-0006).

Author information

Authors and Affiliations

Authors

Contributions

V.S.P. conceived and supervised the study and edited the manuscript; V.I.I.-R. and O.M.K. wrote and edited the manuscript.

Corresponding author

Correspondence to Vadim S. Pokrovsky.

Ethics declarations

The authors declare no conflict of interests. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovsky, V.S., Ivanova-Radkevich, V.I. & Kuznetsova, O.M. Sphingolipid Metabolism in Tumor Cells. Biochemistry Moscow 88, 847–866 (2023). https://doi.org/10.1134/S0006297923070015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923070015

Keywords

Navigation