Skip to main content
Log in

Formation of superoxide radicals in isolated cardiac mitochondria: Effect of low oxygen concentration

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Formation of superoxide radical in isolated rat heart mitochondria under controlled oxygenation has been studied by spin trapping and EPR oxymetry. Lithium phthalocyanine and perdeuterated Tempone-D-15 N 16 were used to determine the oxygen concentration. Tiron was used as a spin trap. By varying the oxygen content in the reaction medium, we have shown that isolated heart mitochondria can produce superoxide even at an oxygen partial pressure of 17.5 mmHg, though at a rate considerably lower than under normal conditions. Raising the oxygen concentration increases the rate of superoxide generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LiPc:

lithium phthalocyanine

ROS:

reactive oxygen species

Tempone-d16-15N:

4-oxo-2,2,6,6-tetramethylpiperidine-d16-15N-oxyl

Tiron:

4,5-dihydroxybenzene-1,3-disulfonate (sodium salt).

References

  1. E. Cadenas and K. J. A. Davies, Free Radic. Biol. Med. 29, 222 (2000).

    Article  Google Scholar 

  2. C. Li and R. M. Jackson, Am. J. Physiol. 282, C227 (2002).

    Google Scholar 

  3. R. Ferrari, G. Guardigli, D. Mele, et al., Curr. Pharm. Des. 10, 1699 (2004).

    Article  Google Scholar 

  4. G. Solani and D. A. Harris, Biochem. J. 390, 377 (2005).

    Article  Google Scholar 

  5. S. Orrenius, V. Gogvadze, and V. Zhivotovsky, Annu. Rev. Pharmacol. Toxicol. 47, 143 (2007).

    Article  Google Scholar 

  6. A. Carpi, R. Menabo, N. Kaludercic, et al., Biochim. Biophys. Acta 1787, 774 (2009).

    Article  Google Scholar 

  7. M. Ksenzenko, A. A. Konstantinov, G. B. Khomutov, et al., FEBS Lett. 155, 19 (1983).

    Article  Google Scholar 

  8. A. A. Ledenev, E. Ya. Popova, A. A. Konstantinov, and E. K. Ruuge, Biofizika 30, 1204 (1985).

    Google Scholar 

  9. J. St-Pierre, J. A. Buckingam, S. J. Roebuck, and M. D. Brand, J. Biol. Chem. 277, 44784 (2002).

    Article  Google Scholar 

  10. J. F. Turrens, J. Physiol. 552, 335 (2003).

    Article  Google Scholar 

  11. A. J. Lambert and M. D. Brand, J. Biol. Chem. 279, 39414 (2004).

    Article  Google Scholar 

  12. M. P. Murphy, Biochem. J. 417, 1 (2009).

    Article  Google Scholar 

  13. Q. Chen, E. J. Vasquez, S. Moghaddas, et al., J. Biol. Chem. 278, 36027 (2003).

    Article  Google Scholar 

  14. F. L. Muller, Y. Liu, and H. van Remmen, J. Biol. Chem. 279, 49064 (2004).

    Article  Google Scholar 

  15. W. Droge, Physiol. Rev. 82, 47 (2002).

    Google Scholar 

  16. F. J. Giordano, J. Clin. Invest. 115, 500 (2005).

    Google Scholar 

  17. T. Klimova and N. S. Chandel, Cell Death Differentiation 15, 660 (2008).

    Article  Google Scholar 

  18. R. V. Shoet and J. A. Garcia, J. Mol. Med. 85, 1309 (2007).

    Article  Google Scholar 

  19. G. L. Semenza, Genes. Dev. 14, 1983 (2000).

    Google Scholar 

  20. N. S. Chandel, D. S. McClintock, S. E. Feliciano, et al., J. Biol. Chem. 275, 25130 (2000).

    Article  Google Scholar 

  21. A. N. Ledenev, A. A. Konstantinov, E. Y. Popova, and E. K. Ruuge, Biochem. Int. 13, 391 (1986).

    Google Scholar 

  22. P. E. James, O. Y. Grinberg, and H. M. Swartz, J. Leukocyte Biol. 64, 78 (1998).

    Google Scholar 

  23. F. McArdle, D. M. Pattwell, A. Vasilaki, et al., Free Radic. Biol. Med. 39, 651 (2005).

    Article  Google Scholar 

  24. J. Ketonen and E. Mervaala, Heart Vessels. 23, 420 (2008).

    Article  Google Scholar 

  25. Y. H. Han and W. H. Park, Oncol. Rep. 21, 253 (2009).

    Google Scholar 

  26. O. V. Korkina and E. K. Ruuge, Biofizika 45, 695 (2000).

    Google Scholar 

  27. I. V. Sviryaeva and E. K. Ruuge, Biofizika 51, 478 (2006).

    Google Scholar 

  28. H. Hou, O. Y. Grinberg, S. Taie, et al., Anest. Analg. 96, 1467 (2003).

    Article  Google Scholar 

  29. H. M. Swartz, Antioxid. Redox. Signal. 6, 677 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Ruuge.

Additional information

Original Russian Text © I.V. Sviryaeva, A.S. Mertsalova, E.K. Ruuge, 2010, published in Biofizika, 2010, Vol. 55, No. 2, pp. 271–276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sviryaeva, I.V., Mertsalova, A.S. & Ruuge, E.K. Formation of superoxide radicals in isolated cardiac mitochondria: Effect of low oxygen concentration. BIOPHYSICS 55, 230–233 (2010). https://doi.org/10.1134/S0006350910020119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910020119

Key words

Navigation