Skip to main content
Log in

The modeling of rat EEG signals in absence epilepsy in the analysis of brain connectivity

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Simple models that describe some features of the electrical brain activity in rats with genetic absence epilepsy recorded before and after an epileptic seizure have been proposed in this study. These models can help to analyze the efficiency of the Granger causality analysis of the directional connectivity determination. The comparison of the results of the experimental and modeled signal analysis, on one hand, reveals a number of artifacts of this method, and on the other hand, proves its effectiveness in the research on absence epilepsy mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO Information Bulletin no. 999 (2012).

  2. A. B. Vol’nova and D. N. Lenkov, Med. Akad. Zh. 12 (1), 7 (2012).

    Google Scholar 

  3. H. Meeren, G. van Luijtelaar, F. Lopes da Silva, and A. Coenen, Arch. Neurol 62 (3), 371 (2005).

    Article  Google Scholar 

  4. E. Sitnikova, Epilepsy Res. 89 (1), 17 (2010).

    Article  Google Scholar 

  5. A. Lüttjohann, J. M. Schoffelen, G. van Luijtelaar, Exp. Neurol. 239, 235 (2013).

    Article  Google Scholar 

  6. C. Marescaux, M. Vergnes, and A. Depaulis, J. Neural Transm. (Suppl.) 35, 37 (1992).

    Google Scholar 

  7. A. M. Coenen and E. L. van Luijtelaar, Behav. Genet. 33, 635 (2003).

    Article  Google Scholar 

  8. A. Depaulis and G. van Luijtelaar, in Animal Models of Seizures and Epilepsy, Ed. by A. Pitkanen, P. Schwartzkroin, and S. Moshe (Elsevier, San Diego, 2006), p. 223.

  9. H. K. Meeren, J. P. Pijn, E. L. van Luijtelaar, et al., J. Neurosci. 22 (4), 1480 (2002).

    Google Scholar 

  10. C. Granger, Econometrica 37 (3), 424 (1969).

    Article  MathSciNet  Google Scholar 

  11. Y. Chen, G. Rangarajan, J. Feng, and M. Ding, Phys. Lett. A 324 (1), 26 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).

    Article  ADS  Google Scholar 

  13. B. Schelter, J. Timmer, and M. Eichler, J. Neurosci. Methods 179, 121 (2009).

    Article  Google Scholar 

  14. M. Rosenblum and A. Pikovsky, Phys. Rev. E 64, 045202 (2001).

    Article  ADS  Google Scholar 

  15. D. Smirnov and B. Bezruchko, Phys. Rev. E 68, 046209 (2003).

    Article  ADS  Google Scholar 

  16. E. Sitnikova, T. Dikanev, D. Smirnov, et al., J. Neurosci. Methods 170, 245 (2008).

    Article  Google Scholar 

  17. C. M. van Rijn, S. Gaetani, I. Santolini, et al., Epilepsia 51 (8), 1511 (2010).

    Article  Google Scholar 

  18. M. V. Sysoeva, E. Sitnikova, I. V. Sysoev, et al., J. Neurosci. Methods 226, 33 (2014).

    Article  Google Scholar 

  19. M. V. Sysoeva and I. V. Sysoev, Pis’ma ZhTF 38 (3), 103 (2012).

    Google Scholar 

  20. I. V. Sysoev, A. S. Karavaev, and P. I. Nakonechnyi, Izv. VUZov: Prikl. Nelinein. Dinam. 18 (4), 81 (2010).

    Google Scholar 

  21. D. A. Smirnov and B. P. Bezruchko, Europhys. Lett. 100, 10005 (2012).

    Article  Google Scholar 

  22. M. V. Sysoeva, T. V. Dikanev, and I. V. Sysoev, Izv. VUZov: Prikl. Nelinein. Dinam. 20 (2), 54 (2012).

    Google Scholar 

  23. A. Simonov, I. Kastalskiy, and V. Kazantsev, Neural Networks 33, 67 (2012).

    Article  Google Scholar 

  24. V. B. Kazantsev, V. I. Nekorkin, S. Binczak, et al., Chaos: Interdisc. J. Nonlinear Sci. 15 (1), 1 (2005).

    MathSciNet  Google Scholar 

  25. W. van Drongelen, H. Lee, M. Hereld, et al., IEEE Trans. Neural Syst. Rehabilit. Eng. 13 (2), 236 (2005).

    Article  Google Scholar 

  26. F. Wendling, F. Bartolomei, J. Bellanger, and P. Chauvel, Eur. J. Neurosci. 15, 1499 (2002).

    Article  Google Scholar 

  27. W. Lytton, Nature Phys. 9, 626 (2008).

    Google Scholar 

  28. R. Stefanescub, R. Shivakeshavana, and S. Talathi, Seizure 21 (10), 748 (2012).

    Article  Google Scholar 

  29. M. V. Kornilov and I. V. Sysoev, Izv. VUZov: Prikl. Nelinein. Dinam. 21 (2), 3 (2013).

    Google Scholar 

  30. W. Hesse, E. Möller, M. Arnold, and B. Schack, J. Neurosci. Methods 124, 27 (2003).

    Article  Google Scholar 

  31. M. A. Shishkova, Dokl. Akad. Nauk SSSR, 209 (3), 576 (1973).

    MathSciNet  Google Scholar 

  32. E. N. Sekerskaya, Zh. Tekhn. Fiz. 2, 253 (1935).

    Google Scholar 

  33. D. A. Smirnov and I. I. Mokhov, Phys. Rev. E. 80, 016208 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Maris and R. Oostenveld, J. Neurosci. Methods 164 (1), 177 (2007).

    Article  Google Scholar 

  35. B. P. Bezruchko, V. I. Ponomarenko, M. D. Prokhorov, et al., Physics-Uspekhi 51, 304 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sysoeva.

Additional information

Original Russian Text © M.V. Sysoeva, G.D. Kuznetsova, I.V. Sysoev, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 782–791.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sysoeva, M.V., Kuznetsova, G.D. & Sysoev, I.V. The modeling of rat EEG signals in absence epilepsy in the analysis of brain connectivity. BIOPHYSICS 61, 661–669 (2016). https://doi.org/10.1134/S0006350916040230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040230

Keywords

Navigation