Skip to main content
Log in

Reducing the flammability of ultra-high-molecular-weight polyethylene by triphenyl phosphate additives

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The thermal degradation and combustion of ultra-high-molecular-weight polyethylene (UHMWPE) doped with triphenyl phosphate (TPP) at atmospheric pressure was studied by molecular beam mass spectrometry, dynamic mass spectrometric thermal analysis, microthermocouples, thermogravimetry, gas chromatography/mass spectrometry. The kinetics of thermal degradation of pure UHMWPE and that mixed with TPP at high (≈150 K/s) and low (0.17 K/s) heating rates was investigated. The effective values of the rate constant and activation energy of the thermal degradation reaction were determined. Burning velocity and temperature profiles in UHMWPE and UHMWPE + TPP flames were measured. The composition of the combustion products in a flame zone adjacent to the burning surface of the sample was determined. TPP vapor in the flame was detected. The addition of TPP to UHMWPE was found to reduce the flammability of the polymer. It is shown that TPP acts as a fire retardant in both the condensed and gas phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Galibeev, R. Z. Khairullin, V. P. Arkhireev, “Ultra-High-Molecular-Weight Polyethylene: Trends and Prospects,” Vestn. Kazan. Tekhnol. Univ. 2, 50–55 (2008).

    Google Scholar 

  2. H. F. Mark, N. M. Bikales, Ch. G. Overberger, and G. Mendes, Encyclopedia of Polymer Science and Technology (Wiley Interscience Publ., New York, 1986), 6, pp. 490.

    Google Scholar 

  3. B. N. Jang and Ch. A. Wilkie, “The Effects of Triphenylphosphate and Recorcinolbis on the Thermal Degradation of Polycarbonate in Air,” Thermochim. Acta 433, 1–12 (2005).

    Article  Google Scholar 

  4. Jian Shi, Bo Jing, Xiaxuan Zou, Hongjun Luo, and Wenli Dai, “Investigation on Thermo-Stabilization Effect and Nonisothermal Degradation Kinetics of the New Compound Additives on Polyoxymethylene,” J. Mater. Sci. 44, 1251–1257 (2009).

    Article  ADS  Google Scholar 

  5. Junfeng Xiao et al., “Fire Retardant Synergism between Melamine and Triphenyl Phosphate in Poly (Butylene Terephthalate),” Polymer Degrad. Stab. 91, 2093–2100 (2006).

    Article  Google Scholar 

  6. M. Thirumal, K. Singha, and D. Khastgir, “Halogen-Free Flame-Retardant Rigid Polyurethane Foams: Effect of Alumina Trihydrate and Triphenylphosphate on the Properties of Polyurethane Foams,” J. Appl. Polymer Sci. 116, 2260–2268 (2010).

    Google Scholar 

  7. W. Xiao, P. He, G. Hu, and B. He, “Study on the Flame-Retardance and Thermal Stability of the Acid Anhydride-Cured Epoxy Resin Flame-Retarded by Triphenyl Phosphate and Hydrated Alumina,” J. Fire Sci. 19, 369–377 (2001).

    Article  Google Scholar 

  8. M. W. Beach, N. G. Rondan, R. D. Froese, B. B. Gerhart, J. G. Green, B. G. Stobby, A. G. Shmakov, V. M. Shvartsberg, and O. P. Korobeinichev, “Studies of Degradation Enhancement of Polystyrene by Flame Retardant Additives,” Polymer Degrad. Stab. 93(9), 1664–1673 (2008).

    Article  Google Scholar 

  9. “Test for Flammability of Plastic Materials for Parts in Devices and Applications,” Underwriters Laboratories Inc. UL-94, Vol. 5 (1996).

  10. M. B. Gonchikzhapov, A. A. Paletsky, and O. P. Korobeinichev, “Investigation of the Thermal Degradation and Combustion of Ultra-High-Molecular-Weight Polyethylene with Added Triphenyl Phosphate,” Vestn. Novosib. Gos. Univ., Ser. Fiz. 6(4), 123–132 (2011).

    Google Scholar 

  11. O. P. Korobeinichev, A. G. Shmakov, and V. M. Shvartsberg, “Combustion Chemistry of Organophosphorus Compounds,” Usp. Khim. 76(11), 1094–1121 (2007).

    Article  Google Scholar 

  12. A. G. Shmakov, V. M. Shvartsberg, O. P. Korobeinichev, M. W. Beach, T. I. Hu, and T. A. Morgan, “Structure of a Freely Propagating Rich CH4/Air Flame Containing Triphenylphosphine Oxide and Hexabromocyclododecane,” Combust. Flame 149(4), 384–391 (2007).

    Article  Google Scholar 

  13. M. W. Beach, T. A. Morgan, T. I. Hu, S. E. Vozar, S. Z. Filipi, V. Sick, A. G. Shmakov, V. M. Shvartsberg, and O. P. Korobeinichev, “Screening Approaches for Gas Phase Activity of Flame Retardants,” Proc. Combust. Inst. 32, 2625–2632 (2009).

    Article  Google Scholar 

  14. A. G. Shmakov, V. M. Shvartsberg, O. P. Korobeinichev, M. W. Beach, T. I. Hu, and T. A. Morgan, “Effect of the Addition of Triphenylphosphine Oxide, Hexabromocyclododecane and Ethyl Bromide on a CH4 /O2/N2 Flame at Atmospheric Pressure,” Fiz. Goreniya Vzryva 43(5), 12–20 (2007) [Combust., Expl., Shock Waves 43 (5), 501–508 (2007)].

    Google Scholar 

  15. Jin Woo Park, Sea Cheon Oh, Hae Pyeong Lee, Hee Taik Kim, Kyong Ok Yoo. “A Kinetic Analysis of Thermal Degradation of Polymers using a Dynamic Method,” Polymer Degrad. Stab. 67, 535–540 (2000).

    Article  Google Scholar 

  16. A. Aboulkas, K. El Harfi, A. El Bouadil, “Thermal Degradation Behaviors of Polyethylene and Polypropylene. Part I: Pyrolysis Kinetics and Mechanisms,” Energy Conv. Management 51, 1363–1369 (2010).

    Article  Google Scholar 

  17. R. Font, I. Aracil, A. Fullana, and J. A. Conesa, “Semivolatile and Volatile Compounds in Combustion of Polyethylene,” Chemosphere 57, 615–627 (2004).

    Article  Google Scholar 

  18. T. P. Wampler, “Thermal Behavior of Polyolefins,” J. Anal. Apll. Pyrol. 15, pp. 187–195 (1989).

    Article  Google Scholar 

  19. O. Kawaguchi, T. Ohtani, and H. Kojima, “Thermal Decomposition Process of a Polyethylene Pellet in a Hot Stagnation Flow,” Combust. Sci. Technol. 130, 411–421 (1997).

    Article  Google Scholar 

  20. W. J. Pitz, N. J. Brown, and R. F. Sawyer, “The Structure of a Poly(Ethylene) Opposed Flow Diffusion Flame,” in Proc. 18th Symp. (Int.) Combust. (1981), 1871–1879.

  21. E. Rudnik and Z. Dobkowski, “Thermal Degradation of UHMWPE,” J. Therm. Anal. 49, 471–475 (1997).

    Article  Google Scholar 

  22. O. P. Korobeinichev, “Dynamic Flame Probe Mass Spectrometry and Condensed-System Decomposition,” Fiz. Goreniya Vzryva 23(5), 64–76 (1987) [Combust., Expl., Shock Waves 23 (5), 565–576 (1987)].

    Google Scholar 

  23. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, and A. G. Shmakov, “Development and Application of Molecular Beam Mass-Spectrometry to the Study of ADN Combustion Chemistry,” J. Propulsion Power 14(6), 991 (1998).

    Article  Google Scholar 

  24. J. Ceamanos, J. F. Mastral, A. Millera, and M. E. Aldea, “Kinetics of Pyrolysis of High Density Polyethylene. Comparison of Isothermal and Dynamic Experiments,” J. Anal. Appl. Pyrol. 65, 93–110 (2002).

    Article  Google Scholar 

  25. T. Ueno, E. Nakashima, and K. Takeda, “Quantitative Analysis of Random Scission and Chain-End Scission in the Thermal Degradation of Polyethylene,” Polymer Degrad. Stab. 95, 1862–1869 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Paletsky.

Additional information

Original Russian Text © M.B. Gonchikzhapov, A.A. Paletsky, L.V. Kuibida, I.K. Shundrina, O.P. Korobeinichev.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 48, No. 5, pp. 97–108, September–October, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonchikzhapov, M.B., Paletsky, A.A., Kuibida, L.V. et al. Reducing the flammability of ultra-high-molecular-weight polyethylene by triphenyl phosphate additives. Combust Explos Shock Waves 48, 579–589 (2012). https://doi.org/10.1134/S0010508212050097

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508212050097

Keywords

Navigation