Skip to main content
Log in

Multistage mechanism of thermal decomposition of hydrogen azide

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A kinetic mechanism for combustion of hydrogen azide (HN3) comprising 61 reactions and 14 flame species (H2, H, N, NH, NH2, NNH, NH3, HN3, N3, N2H2, N2H3, N2H4, N2, and Ar) was developed and tested. The CHEMKIN software was used to calculate the flame speed at a pressure of 50 torr in mixtures of HN3 with various diluents (N2 and Ar), as well as the self-ignition parameters of HN3 (temperature and pressure) at a fixed ignition delay. The modeling results of the flame structure of HN3/N2 mixtures show that at a 25–100% concentration of HN3 in the mixture, the maximum temperature in the flame front is 25–940 K higher than the adiabatic temperature of the combustible mixture. Analysis of the mechanism shows that burning velocity of a HN3/N2 mixture at a pressure of 50 torr is described by the Zel’dovich-Frank-Kamenetskii theory under the assumption that the burn rate controlling reaction is HN3 + M = N2 + NH + M (M = HN3) provided that its rate constant is determined at a superadiabatic flame temperature. The developed mechanism can be used to describe the combustion and thermal decomposition of systems containing HN3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Laffitte, I. Hajal, and J. Combourieu, “The Decomposition Flame of Hydrogen Azide,” in Proc. of 10th Symp. (Int.) on Combustion, 1965, pp. 79–85.

    Google Scholar 

  2. G. Dupre, C. Paillard, and J. Combourieu, Study of the Decomposition Flame of Gaseous Azides by Time-of-Flight Mass Spectrometry, Dynamic Mass Spectrometry, Eds. by D. Price and J. F. J. Todd (Heyden, London, 1976), Vol. 4, pp. 233–245.

  3. R. Meyer and H.-J. Schumacher, “Über den Nicht Explosive Verlaufenden Thermischen Zerfall der Stickstoffwasserstoffsaure,” Z. Physik. Chem. Abt. A 170, 33–40 (1934).

    Google Scholar 

  4. P. Gray, “Spontaneous Ignition of Gaseous Hydrogen Azide,” Nature 179(4559), 576–577 (1957).

    Article  ADS  Google Scholar 

  5. A. S. Rozenberg, Yu. N. Arsen’ev, and V. G. Voronkov, “Ignition of the Gaseous Mixtures of Hydrazoic Acid with Various Diluents,” Fiz. Goreniya Vzryva 6(3), 302–310 (1970) [Combust., Expl., Shock Waves 6 (3), 271–277 (1970)].

    Google Scholar 

  6. V. P. Sinditskii, A. E. Fogelzang, V. Yu. Egorshev, V. V. Serushkin, and V. I. Kolesov, “Effect of Molecular Structure on Combustion of Polynitrogen Energetic Materials,” in Progress in Astronautic and Aeronautic, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics (2000), pp. 120–125.

    Google Scholar 

  7. O. Kajimoto, T. Yamamoto, and T. Fueno, “Kinetic Studies of the Thermal Decomposition of Hydrazoic Acid in Shock Waves,” Phys. Chem. 83(4), 429–435 (1979).

    Article  Google Scholar 

  8. H. A. Millard, H.-J. Werner, T. Hemmer, and P. J. Knowles, “Ab Initio Study of the Energetics of the Spin-Allowed and Spin-Forbidden Decomposition of HN3,” J. Chem. Phys. 93(5), 3307 (1990).

    Article  ADS  Google Scholar 

  9. G. Le Bras and J. Combourieu, “The Reactions of Atomic Hydrogen and Active Nitrogen with Hydrogen Azide,” Int. J. Chem. Kinet. 5, 559–576 (1973).

    Article  Google Scholar 

  10. A. A. Paletsky, N. V. Budachev, and O. P. Korobeinichev, “Mechanism and Kinetics of Thermal Decomposition of 5-aminotetrazole,” Kinet. Katal. 50(5), 653–662 (2009).

    Article  Google Scholar 

  11. M. P. Gramsa, W. R. Anderson, and R. C. Sausa, “An Experimental and Modeling Study of Ingredients for Propellant for Burn-Rate Enhancement,” in Proc. of the Army Sci. Conf. (26th), Held in Orlando, Florida, December 1–4, 2008.

  12. F. Liu, H. Guo, G. J. Smallwood, and O. L. Gulder, “Numerical Study of the Superadiabatic Flame Temperature Phenomenon in Hydrocarbon Premixed Flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).

    Article  Google Scholar 

  13. K. E. Bertagnolli and R. P. Lucht, “Temperature Profile Measurements in Stagnation-Flow, Diamond-Forming Flames Using Hydrogen CARS Spectroscopy,” in 26th Symp. on Combustion (1996), pp. 1825–1833.

    Google Scholar 

  14. F. Liu and O. L. Gülder, “Effect of Pressure and Preheat on Super-Adiabatic Flame Temperatures in Rich Premixed Methane/Air Flames,” Combust. Sci. Technol. 180, 437–452 (2008).

    Article  Google Scholar 

  15. F. Liu and O. L. Gülder, “Effects of H2 and H Preferential Diffusion and Unity Lewis Number on Superadiabatic Flame Temperatures in Rich Premixed Methane Flames,” Combust. Flame 143, 264–281 (2008).

    Article  Google Scholar 

  16. E. Meeks, R. J. Kee, D. S. Dendy, and M. E. Coltrin, “Computational Simulation of Diamond Chemical Vapor Decomposition in Premixed C2H2/O2/H2 and CH4/O2-Strained Flames,” Combust. Flame 92(1–2), 144–160 (1993).

    Article  Google Scholar 

  17. V. V. Zamashchikov, I. G. Namyatov, V. A. Bunev, and V. S. Babkin, “On the Nature of Superadiabatic Temperatures in Premixed Rich Hydrocarbon Flames,” Fiz. Goreniya Vzryva 40(1), 38–41 (2004) [Combust., Expl., Shock Waves 40 (1), 32–35 (2004)].

    Google Scholar 

  18. G. A. Cummings, A. R. Hall, and R. A. M. Straker, “Decomposition Flames of Acetylene and Metylacetylene,” Proc. Combust. Inst. 8, 503–510 (1962).

    Article  Google Scholar 

  19. D. I. Maclean and H. G. Wagner, “The Structure of the Reaction Zones of Ammonia-Oxygen and Hydrazine-Decomposition Flames,” Proc. Combust. Inst. 11, 871–878 (1967).

    Article  Google Scholar 

  20. O. P. Korobeinichev, A. A. Paletsky, N. V. Budachov, T. A. Bolshova, and V. D. Knyazev, “Modeling of Self-Ignition, Structure and Velocity of Propagation of the Flame of Hydrogen Azide,” Int. J. Energ. Mater. Chem. Propuls. 10(2), 107–122 (2011).

    Google Scholar 

  21. A. A. Konnov, Detailed Reaction Mechanism for Small Hydrocarbons Combustion, Release 0.5 (2000); http://homepages.vub.ac.be/~akonnov/.

    Google Scholar 

  22. A. Burcat, “Thermodynamic Data” (Lab. for Chem. Kinet., Inst. of Chemistry, Eotvos University, Budapest, Hungary, 2008); http://garfield.chem.elte.hu/Burcat/burcat.html.

    Google Scholar 

  23. R. J. Kee, F. M. Rupley, and J. A. Miller, “Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Report No. SAND89-8009 (Sandia National Laboratories, 1989).

    Google Scholar 

  24. O. P. Korobeinichev et al., “A Numerical Study of the Superadiabatic Flame Temperature Phenomenon in HN3 Flames,” Combust. Theory Modell. 16(5), 927–939 (2012).

    Article  ADS  Google Scholar 

  25. V. D. Knyazev and O. P. Korobeinichev, “Thermal Decomposition of HN3,” J. Phys. Chem. A. 114, 839–846 (2010).

    Article  Google Scholar 

  26. M. Rohrig and H. G. Wagner, “A Kinetic Study about the Reactions of NH(X 3Σ) with Hydrocarbons. Part 1: Saturated Hydrocarbons and Acetaldehyde,” Ber. Bunsengen. Phys. Chem. 98(6), 858–863 (1994).

    Article  Google Scholar 

  27. I. S. Zaslonko, S. M. Kogarko, and E. V. Mozjuchin, “About Mechanism of Thermal Decomposition of Hydrazoic Acid,” Kinet. Katal. 13(4), 829–835 (1972).

    Google Scholar 

  28. E. Henon and F. Bohr, “Comparative ab Initio MO Investigation on the Reactivity of the Three NH(a1D), NH(X3S2) and NH2(XA 2B1) Radical Species in Their Bimolecular Abstraction Gas-Phase Reaction with the HN3 Molecule,” J. Molec. Struct.: Theochem. 531, 283–299 (2000).

    Article  Google Scholar 

  29. A. A. Konnov and J. De Ruyck, “Kinetic Modeling of the Decomposition and Flames of Hydrazine,” Combust. Flame 124, 106–126 (2001).

    Article  Google Scholar 

  30. A. A. Konnov and J. De Ruyck, “Kinetic Modeling of the Thermal Decomposition of Ammonia,” Combust. Sci. Technol. 152, 23–37 (2000).

    Article  Google Scholar 

  31. X. Liu, M. A. MacDonald, and R. D. Coombe, “Rates of Reactions of N3 with F, Cl, Br, and H Atoms,” J. Phys. Chem. 96, 4907–4912 (1992).

    Article  Google Scholar 

  32. S. J. David and R. D. Coombe, “Rates of Reactions of the Azide Radical,” J. Phys. Chem. 90, 3260 (1986).

    Article  Google Scholar 

  33. I. Hajal and J. Combourieu, “Analyse Theorique de Quelques Caracteristiques Experimentales de la Deflagration de L’acide Azothydrique Gazeux,” J. Chim. Phys. Phys.-Chim. Biol. 63(6), 899–905 (1966).

    Google Scholar 

  34. I. Hajal, J. Combourieu, and H. Guenebaut, “La Deflagration de L’acide Azothydrique Pur ou Dilue Par L’azote,” J. Chim. Phys. 2392, 941–946 (1960).

    Google Scholar 

  35. N. N. Semenov, “Thermal Theory of Combustion and Explosions,” Usp. Fiz. Nauk 24(4), 433–484 (1940).

    Google Scholar 

  36. A. R. Hall and H. G. Wolfhard, “Hydrazine Decomposition Flames at Subatmospheric Pressures,” Trans. Faradey Soc. 52, 1520 (1956).

    Article  Google Scholar 

  37. W. Eckl and N. Eisenreich, “Determination of the Temperature in a Solid Propellant Flame by Analysis of Emission Spectra,” Propellants, Explosives, Pyrotechnics 17, 202–206 (1992).

    Article  Google Scholar 

  38. K. Yamasaki, A. Watanabe, I. Tokue, and Y. Ito., “Dispersed Emission Spectrum of NH2 in the Ultraviolet Laser Photolysis of HN3 and the Mechanism of Formation,” Chem. Phys. Lett. 204(1, 2), 106–110 (1993).

    Article  ADS  Google Scholar 

  39. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovch, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Bolshova.

Additional information

Original Russian Text © T.A. Bolshova, A.A. Paletsky, O.P. Korobeinichev, V.D. Knyazev.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 50, No. 1, pp. 13–29, January–February, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolshova, T.A., Paletsky, A.A., Korobeinichev, O.P. et al. Multistage mechanism of thermal decomposition of hydrogen azide. Combust Explos Shock Waves 50, 10–24 (2014). https://doi.org/10.1134/S001050821401002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821401002X

Keywords

Navigation