Skip to main content
Log in

On the structure of self-similar detonation waves in TNT charges

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A phase-plane method is proposed to model flow fields bounded by constant-velocity detonation waves propagating in TNT charges. Similarity transformations are used to formulate the problem in the phase plane of non-dimensional sound speed Z versus non-dimensional velocity F. The formulation results in two coupled ordinary differential equations that are solved simultaneously. The solution corresponds to an integral curve Z(F) in the phase plane, starting at the Chapman-Jouguet (CJ) point and terminating at the singularity A, which is the sonic point within the wave. The system is closed by computing thermodynamic variables along the expansion isentrope passing through the CJ point, forming, in effect, the complete equation of state of the thermodynamic system. The CJ condition and isentropic states are computed by the Cheetah thermodynamic code. Solutions are developed for planar, cylindrical, and spherical detonations. Species profiles are also computed; carbon graphite is found to be the predominant component (≈10 mol/kg). The similarity solution is used to initialize a 1D gas-dynamic simulation that predicts the initial expansion of the detonation products and the formation of a blast wave in air. Such simulations provide an insight into the thermodynamic states and species concentrations that create the initial optical emissions from TNT fireballs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, “The Dynamics of the Combustion Products behind Plane and Spherical Detonation Fronts in Explosives,” Proc. Roy. Soc. A 200, 235–247 (1950).

    Article  ADS  MATH  Google Scholar 

  2. G. I. Taylor and R. S. Tankin, “Chapter 3: Gas Dynamical Aspects of Detonation,” in Fundamentals of Gas Dynamics, Vol. III: High Speed Aerodynamics and Jet Propulsion (Princeton Univ. Press, Princeton, 1958), pp. 622–686.

    Google Scholar 

  3. H. Jones and A. R. Miller, “The Detonation of Solid Explosives: The Equilibrium Conditions in the Detonation Wave-Front and the Adiabatic Expansion of the Products of Detonation,” Proc. Roy. Soc. A 194(1039), 480–507 (1948).

    Article  ADS  Google Scholar 

  4. L. I. Sedov, Similarity and Dimensional Analysis (Gostekhizdat, Moscow-Leningrad, 1944; Academic Press, New York, 1959).

    Google Scholar 

  5. K. P. Stanyukovich, Unsteady Motion of Continuous Media (Gostekhizdt, Moscow, 1955; Pergamon Press, London, 1960).

    Google Scholar 

  6. G. I. Barenblatt, Scaling (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  7. G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Gidrometeoizdat, Leningrad, 1982; Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  8. Ya. B. Zel’dovich and A. S. Kompaneets, Theory of Detonation (Gostekhizdat, Moscow, 1955; Academic Press, New York, 1960).

    Google Scholar 

  9. J. H. S. Lee, The Detonation Phenomenon (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  10. A. K. Oppenheim, A. L. Kuhl, E. A. Lundstrom, and M. M. Kamel, “A Parametric Study of Self-Similar Blast Waves,” J. Fluid Mech. 52,Part A, 657–682 (1972).

    Article  ADS  MATH  Google Scholar 

  11. A. K. Oppenheim, A. L. Kuhl, and M. M. Kamel, “On Self-Similar Blast Waves Headed by the Chapman-Jouguet Detonation,” J. Fluid Mech. 55(2), 257–270 (1972).

    Article  ADS  MATH  Google Scholar 

  12. G. I. Barenblatt, R. H. Guirguis, M. M. Kamel, A. L. Kuhl, A. K. Oppenheim, and Ya. B. Zeldovich, “Self-Similar Explosion Waves of Variable Energy at the Front,” J. Fluid Mech. 99,Part 4, 841–858 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. L. Kuhl, M. M. Kamel, and A. K. Oppenheim, “Pressure Waves Generated by Steady Flames,” in Fourteenth Symp. (Int.) on Combustion (The Combustion Inst., Pittsburgh, 1973), pp. 1201–1215.

    Google Scholar 

  14. L. E. Fried, “CHEETAH 1.22 User’s Manual,” Report No. UCRL-MA-117541 (LLNL, 1995).

    Google Scholar 

  15. 15. D. L. Ornellas, “Calorimetric Determination of the Heat and Products of Detonation for Explosives: October 1961 to April 1982,” Report No. 1961 to April 1982,” Report No.UCRL-52821 (LLNL, 1982).

    Google Scholar 

  16. A. K. Oppenheim, E. A. Lundstrom, A. L. Kuhl, and M. M. Kamel, “A Systematic Exposition of the Conservation Equations for Blast Waves,” J. Appl. Mech. (December 1971), pp. 783–794.

    Google Scholar 

  17. A. P. Ershov, “Ionization during Detonation of Solid Explosives,” Fiz. Goreniya Vzryva 11(6), 938–945 (1975) [Combust., Expl. Shock Waves 11 (6), 938–945 (1975)].

    Google Scholar 

  18. A. L. Kuhl and M. R. Seizew, “Analysis of Ideal, Strong, Chapman-Jouguet Detonations,” TRW Report No. 78.4735.9-13 (Redondo Beach, CA, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kuhl.

Additional information

Original Russian Text © A.L. Kuhl.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 51, No. 1, pp. 87–95, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhl, A.L. On the structure of self-similar detonation waves in TNT charges. Combust Explos Shock Waves 51, 72–79 (2015). https://doi.org/10.1134/S0010508215010074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215010074

Keywords

Navigation