Skip to main content
Log in

Combustion of nano aluminum particles (Review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Nano aluminum particles have received considerable attention in the combustion community; their physicochemical properties are quite favorable as compared with those of their micron-sized counterparts. The present work provides a comprehensive review of recent advances in the field of combustion of nano aluminum particles. The effect of the Knudsen number on heat and mass transfer properties of particles is first examined. Deficiencies of the currently available continuum models for combustion of nano aluminum particles are highlighted. Key physicochemical processes of particle combustion are identified and their respective time scales are compared to determine the combustion mechanisms for different particle sizes and pressures. Experimental data from several sources are gathered to elucidate the effect of the particle size on the flame temperature of aluminum particles. The flame structure and the combustion modes of aluminum particles are examined for wide ranges of pressures, particle sizes, and oxidizers. Key mechanisms that dictate the combustion behaviors are discussed. Measured burning times of nano aluminum particles are surveyed. The effects of the pressure, temperature, particle size, and type and concentration of the oxidizer on the burning time are discussed. A new correlation for the burning time of nano aluminum particles is established. Major outstanding issues to be addressed in the future work are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Price and R. K. Sigman, “Combustion of Aluminized Solid Propellants,” in AIAA Progress in Aeronautics and Astronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Eds. by V. Yang, T. B. Brill, and W. Z. Ren (AIAA, New York, 2000), pp. 663–687.

    Google Scholar 

  2. M. K. Berner, V. E. Zarko, and M. B. Talawar, “Nanoparticles of Energetic Materials: Synthesis and Properties (Review),” Fiz. Goreniya Vzryva 49(6) 3–30 (2013) [Combust., Expl., Shock Waves 49 (6), 625–647 (2013).

    Google Scholar 

  3. J. P. Foote, B. R. Thompson, and J. T. Lineberry, “Combustion of Aluminum with Steam for Underwater Propulsion,” in Advances in Chemical Propulsion, Ed. by G. D. Roy (CRC Press, 2002), pp. 133–145.

    Google Scholar 

  4. P. Brousseau and C. J. Anderson, “Nanometric Aluminum in Explosives,” Propell., Explos., Pyrotech. 27(5), 300–306 (2002).

    Article  Google Scholar 

  5. E. Shafirovich, V. Diakov, and A. Varma, “Combustion of Novel Chemical Mixtures for Hydrogen Generation,” Combust. Flame 144(1/2), 415–418 (2006).

    Article  Google Scholar 

  6. C. L. Yeh and K. K. Kuo, “Ignition and Combustion of Boron Particles,” Prog. Energy Combust. Sci. 22(6), 511–541 (1996).

    Article  Google Scholar 

  7. G. Young, K. Sullivan, M. R. Zachariah, and K. Yu, “Combustion Characteristics of Boron Nanoparticles,” Combust. Flame 156(2), 322–333 (2009).

    Article  Google Scholar 

  8. A. Ulas, K. K. Kuo, and C. Gotzmer, “Ignition and Combustion of Boron Particles in Fluorine-Containing Environmentsm,” Combust. Flame 127(1–2), 1935–1957 (2001).

    Article  Google Scholar 

  9. G. P. Sutton and O. Biblarz, Rocket Propulsion Elements (John Wiley and Sons, New York, 2010), p. 517.

    Google Scholar 

  10. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air,” Combust. Flame 156(1), 5–13 (2009).

    Article  Google Scholar 

  11. D. S. Sundaram, P. Puri, and V. Yang, “Thermochemical Behavior of Nano-Sized Aluminum-Coated Nickel Particles,” J. Nanopart. Res. 16, 1–16 (2014).

    Article  Google Scholar 

  12. P. Puri and V. Yang, “Effect of Particle Size on Melting of Aluminum at Nano Scales,” J. Phys. Chem. C 111(32), 11776–11783 (2007).

    Article  Google Scholar 

  13. J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, and W. L. Johnson, “Melting Behavior of Nanocrystalline Aluminum Powders,” Nanostruct. Mater. 2(4), 407–413 (1993).

    Article  Google Scholar 

  14. S. L. Lai, J. R. A. Carlsson, and L. H. Allen, “Melting Point Depression of Al Clusters Generated During the Early Stages of Film Growth: Nanocalorimetry Measurements,” Appl. Phys. Lett. 72(9), 1098–1100 (1998).

    Article  ADS  Google Scholar 

  15. V. I. Levitas and K. Samani, “Size and Mechanics Effects in Surface-InducedMelting of Nanoparticles,” Nature Commun. 2, 1–6 (2011).

    Article  Google Scholar 

  16. V. I. Levitas, M. L. Pantoya, G. Chauhan, and I. Rivero, “Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles,” J. Phys. Chem. C 113(32), 14088–14096 (2009).

    Article  Google Scholar 

  17. C. Q. Sun, Y. Wang, B. K. Yay, S. Li, H. Huang, and Y. B. Zhang, “Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom,” J. Phys. Chem. B 106(41), 10701–10705 (2002).

    Article  Google Scholar 

  18. C. Brossard, A. Ulas, C. L. Yeh, and K. K. Kuo, “Ignition and Combustion of Isolated Aluminium Particles in the Post-Flame Region of a Flat-Flame Burner,” in 16th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Krakow, Poland, 1997.

  19. T. P. Parr, C. Johnson, D. Hanson-Parr, K. Higa, and K. Wilson, “Evaluation of Advanced Fuels for Underwater Propulsion,” in 39th JANNAF Combustion Subcommittee Meeting, 2003.

  20. I. G. Assovskiy, O. M. Zhigalina, and V. I. Kolesnikov-Svinarev, “Gravity Effect in Aluminum Droplet Ignition and Combustion,” in Fifth Int. Microgravity Combustion Workshop, Cleveland, 1999.

  21. R. Friedman and A. Macek, “Ignition and Combustion of Aluminium Particles in Hot Ambient Gases,” Combust. Flame 6, 9–19 (1962).

    Article  Google Scholar 

  22. C. J. Bulian, T. T. Kerr, and Puszynski J. A. “Ignition Studies of Aluminum and Metal Oxide Nanopowders,” in 31st Int. Pyrotechnics Seminar, Fort Collins, Colarado, 2004.

    Google Scholar 

  23. M. E. Derevyaga, L. N. Stesik, and E. A. Fedorin, “Ignition and Combustion of Aluminum and Zinc in Air,” Fiz. Goreniya Vzryva 13(6), 852–857 (1977) [Combust., Expl., Shock Waves 13 (6), 722–726 (1977)].

    Google Scholar 

  24. V. A. Ermakov, A. A. Razdobreev, A. I. Skorik, V. V. Pozdeev, and S. S. Smolyakov, “Temperature of Aluminum Particles at the Time of Ignition and Combustion,” Fiz. Goreniya Vzryva 18(2), 141–143 (1982) [Combust., Expl., Shock Waves 18 (2), 256–257 (1982)].

    Google Scholar 

  25. D. K. Kuehl, “Ignition and Combustion of Aluminum and Beryllium,” AIAA J. 3(12), 2239–2247 (1965).

    Article  ADS  Google Scholar 

  26. S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and Combustion of Aluminum in Oxygen/Nitrogen Mixture Streams,” Combust. Flame 108(4), 387–390 (1997).

    Article  Google Scholar 

  27. M. A. Gurevich, K. I. Lapkina, and E. S. Ozerov, “Limiting Conditions of Ignition of an Aluminum Particle,” Fiz. Goreniya Vzryva 6(2), 172–176 (1970).

    Google Scholar 

  28. M. Schoenitz, C. Chen, and E. L. Dreizin, “Oxidation of Aluminum Particles in the Presence of Water,” J. Phys. Chem. B 113(15), 5136–5140 (2009).

    Article  Google Scholar 

  29. T. G. Theofanous, X. Chen, P. Di Piazza, M. Epstein, and H. K. Fauske, “Ignition of Aluminum Droplets Behind Shock Waves in Water,” Phys. Fluids 6(11), 3513–3515 (1994).

    Article  ADS  Google Scholar 

  30. M. A. Trunov, M. Schoenitz, and E. L. Dreizin, “Effect of Polymorphic Phase Transformations in Alumina Layer on Ignition of Aluminum Particles,” Combust. Theory Model. 10(4), 603–623 (2006).

    Article  MATH  Google Scholar 

  31. A. Rai, D. Lee, K. Park, and M. R. Zachariah, “Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles,” J. Phys. Chem. B 108(39), 14793–14795 (2004).

    Article  Google Scholar 

  32. H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Disel Fuel,” Nano Lett. 8(5), 1410–1416 (2008).

    Article  ADS  Google Scholar 

  33. Y. Gan and L. Qiao, “Combustion Characteristics of Fuel Droplets with Addition of Nano and Micron-Sized Aluminum Particles,” Combust. Flame 158(2), 354–368 (2011).

    Article  Google Scholar 

  34. J. L. Sabourin, R. A. Yetter, B.W. Asay, J. M. Lloyd, V. E. Sanders, G. A. Risha, and S. F. Son, “Effect of Nanoaluminum and Fumed Silica Particles on Deflagration and Detonation of Nitromethane,” Propell., Explos., Pyrotech. 34(5), 385–393 (2009).

    Article  Google Scholar 

  35. R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant, “Enhanced Propellant Combustion with Nanoparticles,” Nano Lett. 3(2), 253–255 (2003).

    Article  ADS  Google Scholar 

  36. L. Meda, G. Marra, L. Galfetti, S. Inchingalo, F. Severini, and L. De Luca, “Nano-Composites for Rocket Solid Propellants,” Compos. Sci. Technol. 65(5), 769–773 (2005).

    Article  Google Scholar 

  37. A. Dokhan, E. W. Price, J. M. Seitzman, and R. K. Sigman, “The Effects of Bimodal Aluminum with Ultrafine Aluminum on the Burning Rates of Solid Propellants,” Proc. Combust. Inst. 29(2), 2939–2946 (2002).

    Article  Google Scholar 

  38. K. Jayaraman, K. V. Anand, S. R. Chakravarthy, and R. Sarathi, “Effect of Nano-Aluminum in Plateau-Burning and Catalyzed Composite Solid Propellant Combustion,” Combust. Flame 156(8), 1662–1673 (2009).

    Article  Google Scholar 

  39. M. L. Pantoya and J. J. Granier, “Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites,” Propell., Explos., Pyrotech. 30(1), 53–62 (2005).

    Article  Google Scholar 

  40. M. Schoenitz, T. S. Ward, and E. L. Dreizin, “Fully Dense Nano-Composite Energetic Powders Prepared by Aarrested Reactive Milling,” Proc. Combust. Inst. 30(2), 2071–2078 (2005).

    Article  Google Scholar 

  41. S. F. Son, B. W. Asay, T. J. Foley, R. A. Yetter, M. H. Wu, and G. A. Risha, “Combustion of Nanoscale Al-MoO3 Thermite in Microchannels,” J. Propul. Power 23(4), 715–721 (2007).

    Article  Google Scholar 

  42. M. R. Weismiller, J. Y. Malchi, R. A. Yetter, and T. J. Foley, “Dependence of Flame Propagation on Pressure and Pressurizing Gas for an Al/CuO Nanoscale Thermite,” Proc. Combust. Inst. 32(2), 1895–1903 (2009).

    Article  Google Scholar 

  43. K. Sullivan and M. R. Zachariah, “Simultaneous Pressure and Optical Measurements of Nanoaluminum Thermites: Investigating the Reaction Mechanism,” J. Propul. Power 26(3), 467–472 (2010).

    Article  Google Scholar 

  44. R. A. Yetter, G. A. Risha, and S. F. Son, “Metal Particle Combustion and Nanotechnology,” Proc. Combust. Inst. 32(2), 1819–1838 (2009).

    Article  Google Scholar 

  45. M. R. Weismiller, J. Y. Malchi, J. G. Lee, R. A. Yetter, and T. J. Foley, “Effects of Fuel and Oxidizer Particle Dimensions on the Propagation of Aluminum Containing Thermites,” Proc. Combust. Inst. 33(2), 1989–1996 (2011).

    Article  Google Scholar 

  46. G. A. Risha, S. F. Son, R. A. Yetter, V. Yang, and B. C. Tappan, “Combustion of Nano-Aluminum and LiquidWater,” Proc. Combust. Inst. 31(2), 2029–2036 (2007).

    Article  Google Scholar 

  47. G. A. Risha, T. L. Connell, Jr, R. A. Yetter, D. S. Sundaram, and V. Yang, “Combustion of Frozen Nanoaluminum and Water Mixtures,” J. Propul. Power 30(1), 133–142 (2014).

    Article  Google Scholar 

  48. D. S. Sundaram, V. Yang, T. L. Connell, Jr, G. A. Risha, and R. A. Yetter, “Flame Propagation of Nano/Micron-Sized Aluminum Particles and Ice (ALICE) Mixtures,” Proc. Combust. Inst. 34(2), 2221–2228 (2013).

    Article  Google Scholar 

  49. V. G. Ivanov, O. V. Gavrilyuk, O. V. Glazkov, and M. N. Safronov, “Specific Features of the Reaction between Ultrafine Aluminum and Water in a Combustion Regime,” Fiz. Goreniya Vzryva 36(2), 60–66 (2000) [Combus., Expl., ShockWaves 36 (2), 213–219 (2000)].

    Google Scholar 

  50. E. Shafirovich, V. Diakov, and A. Varma, “Combustion of Novel Chemical Mixtures for Hydrogen Generation,” Combust. Flame 144(1/2), 415–418 (2006).

    Article  Google Scholar 

  51. M. W. Beckstead, K. Puduppakkam, P. Thakre, and V. Yang, “Modeling of Combustion and Ignition of Solid-Propellant Ingredients,” Prog. Energy Combust. Sci. 33(6), 497–551 (2007).

    Article  Google Scholar 

  52. T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).

    Article  Google Scholar 

  53. R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Surface Passivation of Bare Aluminum Nanoparticles using Perfluoroalkyl Carboxylic Acids,” Chem. Mater. 17(11), 2987–2996 (2005).

    Article  Google Scholar 

  54. R. J. Jouet, J. R. Carney, R. H. Granholm, H. W. Sandusky, and A. D. Warren, “Preparation and Reactivity Analysis of Novel Perfluoroalkyl Coated Aluminum Nanocomposites,” Mater. Sci. Technol. 22(4), 422–429 (2006).

    Article  Google Scholar 

  55. Y. Cui, S. Zhao, D. Tao, Z. Liang, D. Huang, and Z. Xu, “Synthesis of Size-Controlled and Discrete Core-Shell Aluminum Nanoparticles with a Wet Chemical Process,” Mater. Lett. 121, 54–57 (2014).

    Article  Google Scholar 

  56. Y. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the Surface of Aluminum Nanopowders by Protective Coatings of the Different Chemical Origin,” Appl. Surface Sci. 253(12), 5558–5564 (2007).

    Article  ADS  Google Scholar 

  57. D. S. Sundaram, P. Puri, and V. Yang, “Pyrophoricity of Nascent and Passivated Aluminum Particles at Nano-Scales,” Combust. Flame 160(9), 1870–1875 (2013).

    Article  Google Scholar 

  58. A. V. Fedorov and Yu. V. Kharlamova, “Ignition of an Aluminum Particle,” Fiz. Goreniya Vzryva 39(5), 65–68 (2003) [Combust., Expl., Shock Waves 39 (5), 544–547 (2003)].

    Google Scholar 

  59. A. V. Fedorov and A. V. Shul’gin, “Point Model of Combustion of Aluminum Nanoparticles in the Reflected Shock Wave,” Fiz. Goreniya Vzryva 47(3), 47–51 (2011) [Combust., Expl., Shock Waves 47 (3), 289–293 (2011)].

    Google Scholar 

  60. M. W. Beackstead, Y. Liang, and K. V. Pudduppakkam, “Numerical Simulation of Single ALuminum Particle Combustion (Review),” Fiz. Goreniya Vzryva 41(6), 15–33 (2005) [Combust., Expl., Shock Waves 41 (6), 622–638 (2005)

    Google Scholar 

  61. F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat Conduction from a Spherical Nano-Particle: Status of Modeling Heat Conduction in Laser-Induced Incandescence,” Appl. Phys. B 83(3), 355–382 (2006).

    Article  ADS  Google Scholar 

  62. S. Mohan, M. A. Trunov, and E. L. Dreizin, “Heating and Ignition of Metal Particles in the Transition Heat Transfer Regime,” J. Heat Transfer 130(10), 104505 (2008).

    Article  Google Scholar 

  63. P. Puri, “Multi Scale Modeling of Ignition and Combustion of Micro and Nano Aluminum Particles,” Ph. D. Thesis, Department of Mechanical and Nuclear Engineering (The Pennsylvania State University, University Park, 2008).

    Google Scholar 

  64. A. V. Filippov and D. E. Rosner, “Energy Transfer between an Aerosol Particle and Gas at High Temperature Ratios in the Knudsen Transition Regime,” Int. J. Heat Mass Transfer. 43(1), 127–138 (2000).

    Article  MATH  Google Scholar 

  65. A. Ermoline, D. Yildiz, and E. L. Dreizin, “Model of Heterogeneous Combustion of Small Particles,” Combust. Flame 160(12), 2982–2989 (2013).

    Article  Google Scholar 

  66. D. Allen, H. Krier, and N. Glumac, “Heat Transfer Effects in Nano-Aluminum Combustion at High Temperatures,” Combust. Flame 161(1), 295–302 (2014).

    Article  Google Scholar 

  67. O. Levenspiel, Chemical Reaction Engineering (John Wiley and Sons, New York, 1962).

    Google Scholar 

  68. T. R. Marrero and E. A. Mason, “Gaseous Diffusion Coefficients,” J. Phys. Chem. Ref. Data 1(1), 3–118 (1972).

    Article  ADS  Google Scholar 

  69. T. Bazyn, H. Krier, and N. Glumac, “Combustion of Nanoaluminum at Elevated Pressure and Temperature Behind Reflected Shock Wavesm,” Combust. Flame 145(4), 703–713 (2006).

    Article  Google Scholar 

  70. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).

    Article  Google Scholar 

  71. B. J. Henz, T. Hawa, and M. R. Zachariah, “On the Role of Built-in Electric Fields on the Ignition of Oxide Coated Nanoaluminum: Ion Mobility Versus Fickian Diffusion,” J. Appl. Phys. 107(2), 024901 (2010).

    Article  ADS  Google Scholar 

  72. N. Eisenreich, H. Fietzek, M. Del Mar Juez-Lorenzo, V. Kolarik, A. Koleczko, and V. Weiser, “On the Mechanism of Low Temperature Oxidation for Aluminum Particles Down to the Nano-Scale,” Propell., Explos., Pyrotech. 29(3), 137–145 (2004).

    Article  Google Scholar 

  73. K. Aita, N. Glumac, S. P. Vanka, and H. Krier, “Modeling the Combustion of Nano-Sized Aluminum Particles,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006.

  74. V. I. Levitas, “Burning Time of Aluminum Nanoparticles: Strong Effect of the Heating Rate and Melt-Dispersion Mechanism,” Combust. Flame 156(2), 543–546 (2009).

    Article  Google Scholar 

  75. V. I. Levitas, M. L. Pantoya, and B. Dikici, “Melt Dispersion Versus Diffusive Oxidation Mechanism for Aluminum Nanoparticles: Critical Experiments and Controlling Parmeters,” Appl. Phys. Lett. 92(1), 011921 (2008).

    Article  ADS  Google Scholar 

  76. P. Lynch, G. Fiore, H. Krier, and N. Glumac, “Gas-Phase Reaction in Nanoaluminum Combustion,” Combust. Sci. Technol. 182(7), 842–857 (2010).

    Article  Google Scholar 

  77. Y. Li, R. Clark, A. Nakano, R. K. Kalia, and P. Vashishta, “Molecular Dynamics Study of Size Dependence of Combustion of Aluminum Nanoparticles,” Mater. Res. Soc. Symp. Proc. (2012).

    Google Scholar 

  78. Y. Li, R. K. Kalia, A. Nakano, and P. Vashishta, “Size Effect on the Oxidation of Aluminum Nanoparticle: Multimillion-Atom Reactive Molecular Dynamics Simulations,” J. Appl. Phys. 114(13), 134312 (2013).

    Article  ADS  Google Scholar 

  79. A. V. Grosse and J. B. Conway, “Combustion of Metals in Oxygen,” Ind. Eng. Chem. 50(4), 663–672 (1958).

    Article  Google Scholar 

  80. I. Glassman, “Combustion of Metals: Physical Considerations. Solid Propellant Rocket Research,” in ARS Progress in Astronautics and Rocketry (Academic Press, New York, 1960), Vol. 1, pp. 253–258.

    Google Scholar 

  81. B. J. Mcbride and S. Gordon, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions,” National Aeronautics and Space Administration (1996).

    Google Scholar 

  82. P. Bucher, R. A. Yetter, F. L. Dryer, T. P. Parr, D. M. Hanson-Parr, and E. P. Vicenzi, “Flame Structure Measurement of Single Isolated Aluminum Particles Burning in Air,” Symp. (Int.) on Combustion 26(2), 1899–1908 (1996).

    Article  Google Scholar 

  83. E. L. Dreizin, “Experimental Study of Stages in Aluminum Particle Combustion in Air,” Combust. Flame 105(4), 541–556 (1996).

    Article  Google Scholar 

  84. R. A. Yetter and F. L. Dryer, “Metal Particle Combustion and Classification,” in Micro-Gravity Combustion: Fire in Free Fall, Ed. by H. D. Ross (Academic Press, 2001), pp. 419–478.

    Google Scholar 

  85. R. P. Wilson (Jr.), and F. A. Williams, “Experimental Study of the Combustion of Single Aluminum Particles in O2/Air,” Symp. (Int.) on Combust. 13(1), 833–845 (1971).

    Article  Google Scholar 

  86. B. Legrand, M. Marion, C. Chauveau, I. Gokalp, and E. Shafirovich, “Ignition and Combustion of Levitated Magnesium and Aluminum Particles in Carbon Dioxide,” Combust. Sci. Technol. 165(1), 151–174 (2001).

    Article  Google Scholar 

  87. N. Glumac, H. Krier, T. Bazyn, and R. Eyer, “Temperature Measurements of Aluminum Particles Burning in Carbon Dioxide,” Combust. Sci. Technol. 177(3), 485–511 (2005).

    Article  Google Scholar 

  88. E. L. Dreizin, “On the Mechanism of Asymmetric Aluminum Particle Combustion,” Combust. Flame. 117(4), 841–850 (1999).

    Article  Google Scholar 

  89. P. Bucher, R. A. Yetter, F. L. Dryer, T. Parr, and D. M. Hanson-Parr, “PLIF Species and Ratiometric Temperature Measurements of Aluminum Particle Combustion in O2, CO2 and N2O Oxidizers and Comparison with Model Calculations,” Symp. (Int.) on Combust. 27(2), 2421–2429 (1998).

    Article  Google Scholar 

  90. S. Rossi, E. L. Dreizin, and C. K. Law, “Combustion of Aluminum Particles in Carbon Dioxide,” Combust. Sci. Technol. 164(1), 209–237 (2001).

    Article  Google Scholar 

  91. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, V. S. Logachev, and A. I. Korotkov, Combustion of Powdered Metals in Active Media (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  92. T. Bazyn, H. Krier, and N. Glumacm, “Evidence for the Transition from the Diffusion-Limit in Aluminum Particle Combustion,” Proc. Combust. Inst. 31(2), 2021–2028 (2007).

    Article  Google Scholar 

  93. C. Badiola, R. J. Gill, and E. L. Dreizin, “Combustion Characteristics of Micron-Sized Aluminum Particles in Oxygenated Environments,” Combust. Flame 158(10), 2064–2070 (2011).

    Article  Google Scholar 

  94. I. S. Altman, “On Heat Transfer between Nanoparticles and Gas at High Temperatures,” J. Aerosol Sci. 30(1), S423–S424 (1999).

    Article  Google Scholar 

  95. S. Mohan, M. A. Trunov, and E. L. Dreizin, “On Possibility of Vapor Phase Combustion for Fine Aluminum Particles,” Combust. Flame 156(11), 2213–2216 (2009).

    Article  Google Scholar 

  96. A. F. Belyaev, Yu. V. Frolov, and A. I. Korotkov, “On Combustion and Ignition of Fine Aluminum Particles,” Fiz. Goreniya Vzryva 4(3), 323–329 (1968).

    Google Scholar 

  97. R. Friedman and A. Macek, “Combustion Studies of Single Aluminum Particles,” Symp. (Int.) on Combust. 9(1), 703–709 (1963).

    Article  Google Scholar 

  98. A. Davis, “Solid Propellants: The Combustion of Particles of Metal Ingredients,” Combust. Flame 7, 359–367 (1963).

    Article  Google Scholar 

  99. A. Zenin, G. Kusnezov, and V. Kolesnikov, “Physics of Aluminum Particle Combustion at Zero-Gravity,” in AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1999.

  100. J. C. Melcher, R. L. Burton, and H. Krier, “Combustion of Aluminum Particles in Solid Rocket Motor Flows,” in AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, 1999.

  101. R. O. Foelsche, R. L. Burton, and H. Krier, “Ignition and Combustion of Aluminum Particles in H2/O2/N2 Combustion Products,” J. Propul. Power 14(6), 1001–1008 (1998).

    Article  Google Scholar 

  102. M. Marion, C. Chauveau, and I. Gokalp, “Studies on the Ignition and Burning of Levitated Aluminum Particles,” Combust. Sci. Technol. 115(4–6), 369–390 (1996).

    Article  Google Scholar 

  103. M. W. Beakstead, “Correlating Aluminum Burning Times,” Fiz. Goreniya Vzryva 41(5), 55–69 (2005) [Combust., Expl., Shock Waves 41 (5), 533–546 (2005)].

    Google Scholar 

  104. P. Lynch, H. Krier, and N. Glumac, “A Correlation for Burn time of Aluminum Particles in the Transition Regime,” Proc. Combust. Inst. 32(2), 1887–1893 (2009).

    Article  Google Scholar 

  105. P. Chakraborty and M. R. Zachariah, “Do Nanoenergetic Particles Remain Nano-Sized during Combustion?” Combust. Flame 161(5), 1408–1416 (2014).

    Article  Google Scholar 

  106. J. Buckmaster and T. L. Jackson, “An Examination of the Shrinking-Core Model of Sub-Micron Aluminum Combustion,” Combust. Theory Model. 17(2), 335–353 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  107. P. Puri and V. Yang, “Thermo-Mechanical Behavior of Nano Aluminum Particles with Oxide Layers During Melting,” J. Nanopart. Res. 12(8), 2989–3002 (2010).

    Article  Google Scholar 

  108. K. O. Hartman, “Ignition and Combustion of Aluminum Particles in Propellant Flame Gases,” in Proc. of 8th JANNAF Combustion Meeting, 1971.

  109. S. E. Olsen and M. W. Beckstead, “Burn Time Measurements of Single Aluminum Particles in Steam and CO2 Mixtures,” J. Propul. Power 12(4), 662–671 (1996).

    Article  Google Scholar 

  110. J. L. Prentice, “Combustion of Laser-Ignited Aluminum Droplets in Wet and Dry Oxidizers,” in 12th Aerospace Sciences Meeting, Washington, 1974.

  111. R. J. Gill, C. Badiola, and E. L. Dreizin, “Combustion Times and Emission Profiles of Micron-Sized Aluminum Particles Burning in Different Environments,” Combust. Flame 157(11), 2015–2023 (2010).

    Article  Google Scholar 

  112. S. C. Wong and S. R. Turns, “Ignition of Aluminum Slurry Droplets,” Combust. Sci. Technol. 52(4–6), 221–242 (1987).

    Article  Google Scholar 

  113. T. Bazyn, H. Krier, and N. Glumac, “Oxidizer and Pressure Effects on the Combustion of 10-µm Aluminum Particles,” J. Propul. Power 21(4), 577–582 (2005).

    Article  Google Scholar 

  114. B. Bockmon, M. Pantoya, S. Son, B. Asay, and J. Mang, “Combustion Vlocities and Propagation Mechanisms of Metastable Interstitial Composites,” J. Appl. Phys. 98, 064903 (2005).

    Article  ADS  Google Scholar 

  115. V. I. Levitas, B. W. Asay, S. F. Son, and M. Pantoya, “Melt Dispersion Mechanism for Fast Reaction of Nanothermites,” Appl. Phys. Lett. 89, 071909 (2006).

    Article  ADS  Google Scholar 

  116. Y. Ohkura, P. M. Rao, and X. Zheng, “Flash Ignition of Al Nanoparticles: Mechanism and Applications,” Combust. Flame 158, 2544–2548 (2011).

    Article  Google Scholar 

  117. V. I. Levitas, “Mechanochemical Mechanism for Reaction of Aluminium Nano- and Micrometre-Scale Particles,” Phil. Trans. Roy Soc. A 371, 20120215 (2013).

    Article  ADS  Google Scholar 

  118. V. I. Levitas, M. L. Pantoya, and B. Dikici, “Melt Dispersion Mechanism Versus Diffusive Oxidation Mechanism for Aluminum Nanoparticles: Critical Experiments and Controlling Parameters,” Appl. Phys. Lett. 92, 011921 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yang.

Additional information

Original Russian Text © D.S. Sundaram, V. Yang, V.E. Zarko.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 51, No. 2, pp. 37–64, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaram, D.S., Yang, V. & Zarko, V.E. Combustion of nano aluminum particles (Review). Combust Explos Shock Waves 51, 173–196 (2015). https://doi.org/10.1134/S0010508215020045

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215020045

Keywords

Navigation