Skip to main content
Log in

Oxidation of ASD-4 Powder Modified by V2O5

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The sequence of phase formation in the oxidation of ASD-4 aluminum powder modified by vanadium pentoxide during heating in air in the temperature range 873–1073 K has been studied by synchrotron radiation x-ray diffraction. It has been shown that the sharp acceleration of the oxidation of the modified powder is related to the loss of the protective properties of the oxide shell on the particle surface due to the polyvalence of vanadium, which provides structural and phase changes on the surface and in the depth of the oxidized metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Mal’tsev, A. L. Breiter, E. N. Popov, and V. P. Velikanov, “Some Regularities of Combustion of Dispersed Metals in Condensed Systems,” Fiz. Kond. Sist., No. 32, 77–87 (1989).

    Google Scholar 

  2. M. W. Beckstead, “A Summary of Aluminum Combustion,” in Interenal Aerodynamics in Solid Rocket Propulsion, Chapter 5, Tech. Report No. RTO-EN-023 (2004).

    Google Scholar 

  3. D. Meinkohn, “Metal-Particle Ignition and Oxide-Layer Instability,” Fiz. Goreniya Vzryva 42 (2), 39–52 (2006) [Combust., Expl., Shock Waves 42 (2), 158–169 (2006)].

    Google Scholar 

  4. A. A. Gromov, T. A. Khabas, A. P Il’in, et al., Combustion of Metal Nanopowders (Del’taplan, Tomsk, 2008) [in Russian].

    Google Scholar 

  5. V. G. Shevchenko, “Modification of Dispersed Aluminum for Energetic Condensed Systems,” Vestn. Yuzh. Ural. Gos. Univ., Ser. Mashinostroenie, No. 33, 101–106 (2012).

    Google Scholar 

  6. V. G. Shevchenko, D. A. Eselevich, A. B. Konyukova, and V. N. Krasil’nikov, “Effect of Vanadium-Containing Activating Additives on the Oxidation of Aluminum Powders,” Khim. Fiz. 33 (10), 10–17 (2014).

    Google Scholar 

  7. V. G. Shevchenko, V. N. Krasilnikov, D. A. Eselevich, et al., “Effect V2O5 on the Mechanism of Oxidation of the Powder ASD-4,” Fiz. Goreniya Vzryva 51 (5), 70–76 (2015) [Combust., Expl., Shock Waves 51 (5), 572–578 (2015)].

    Google Scholar 

  8. V. G. Gopienko, B. P. Nazarov, N. V. Volkov, et al., “Development and Study of a Technology for Producing a High-Purity Aluminum Powder,” in Preparation, Properties, and Application of Sprayed Metal Powders (Inst. for Problems of Mater. Sci., Kiev, 1979), pp. 103–112.

    Google Scholar 

  9. V. A. Silaev and B. N. Putimtsev, “Production of Alloyed Powders by Atomization of Melts with Nitrogen,” in Production, Properties, and Applications of Atomized Metal Powders (Inst. Probl. Materialoved., Akad. Nauk Ukr. SSR, Kiev, 1976) [in Russian].

    Google Scholar 

  10. M. Gotic, S. Popovic, M. Ivanda, and S. Music, “Sol-Gel Synthesis and Characterization of V2O5 Powders,” Mater. Lett. 3186–3192 (2003).

    Google Scholar 

  11. G. Du, K. H. Seng, Z. Guo, et al., “Graphene- V2O5·nH2O Xerogel Composite Cathodes for Lithium Ion Batteries,” RSC Adv. 4, 690–697 (2011).

    Article  Google Scholar 

  12. W. Avansi, C. Ribeiro, E. R. Leite, and V. R. Mastelaro, “Vanadium Pentoxide Nanostructures: An Effective Control of Morphology and Crystal Structure in Hydrothermal Conditions,” Crystal Growth Design 9, 3626–3631 (2009).

    Article  Google Scholar 

  13. A. I. Ancharov, A. Yu. Manakov, N. A. Mezentsev, et al., “New Station at the 4th Beamline of the VEPP- 3 Storagering,” Nucl. Inst. Meth. A 470 (12), 80–83 (2001).

    Article  ADS  Google Scholar 

  14. L. A. Akashev, V. D. Shevchenko, V. A. Kochedykov, N. A. Popov, “A Method for Determining the Thickness of a Thin Transparent Film,” RF Patent No. 2463554, Publ. 10.10.12.

  15. L. A. Akashev, N. A. Popov, M. V. Kuznetsov, et al., “Thermal Oxidation of the Surface of Al + REM Binary Alloys,” Zh. Fiz. Khim. 89 (5), 287–291 (2015).

    Google Scholar 

  16. V. I. Kononenko and V. G. Shevchenko, Physical Chemistry of Activation of Aluminum Based Disperse Systems (Ural Branch of Russian Acad. of Sci., Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  17. V. L. Volkov, Interstitial Phases Based on Vanadium Oxides (Ufa Scientific Center, Sverdlovsk, 1987) [in Russian].

    Google Scholar 

  18. J. Zhao, G. Wang, X. Li, and C. Li, “Intercalation of Conducting Poly (N-Propane Sulfonic Acid Aniline) in V2O5 Xerogel,” J. Appl. Polymer Sci. 103, 2569–2574 (2007).

    Article  Google Scholar 

  19. C. Y. Lee, A. C. Marschilok, A. Subramanian, et al., “Synthesis and Characterization of Sodium Vanadium Oxide Gels: The Effects of Water (n) and Sodium (x) Content on the Electrochemistry of NaxV2O5·nH2O,” Phys. Chem. Chem. Phys. 13, 18047–18054 (2011).

    Article  Google Scholar 

  20. G. Lang, “Einfluss von Zusatzelementen auf die Oberflächenspannung von flüssigem Reinstaluminium,” Aluminium (BRD) 50 (11), 731–734 (1974).

    Google Scholar 

  21. Physicochemical Properties of Oxides: Reference, Ed. by G. V. Samsonov (Mashinostroienie, Moscow, 1978) [in Russian].

  22. S. Kumar and N. Krishnamurthy, “Synthesis of V–Ti–Cu Alloys by Aluminothermy Co-Reduction of Its Oxides,” Proc. Appl. Ceram. 5 (4), 181–186 (2011).

    Article  Google Scholar 

  23. N. S. Sharipova and G. I. Ksandopulo, “Phase and Structural Transformations and Mechanism of Propagation of Self-Propagating High-Temperature Synthesis in a V2O5–Al Mixture,” Fiz. Goreniya Vzryva 33 (6), 36–47 (1997) [Combust., Expl., Shock Waves 33 (6), 659–668 (1997)].

    Google Scholar 

  24. R. A. Andrievskii and A. V. Khachoyan, “Role of Dimensional Effects and Interfaces in the Physicochemical Properties of Consolidated Nanomaterials,” Ross. Khim. Zh. 52 (2), 4–14 (2009).

    Google Scholar 

  25. A. I. Rusanov, Colloid-Chemical Aspects of Nanoscience, Nanostructured Materials: Production, Properties, and Application (Belarus. Navuka, Minsk, 2009), pp. 71–90.

    Google Scholar 

  26. “A Rietveld Extended Program to Perform the Combined Analysis: Diffraction, Fluorescence and Reflectivity Data Using X-ray, Neutron, TOF or Electrons,” http://maud.radiographema.eu (10.09.2016).

  27. “Open-Access Collection of Crystal Structures of Organic, Inorganic, Metal–Organic Compounds and Minerals, Excluding Biopolymers,” http://www.crystallography.net (12.09.2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Shevchenko.

Additional information

Original Russian Text © V.G. Shevchenko, D.A. Eselevich, N.A. Popov, V.N. Krasil’nikov, Z.S. Vinokurov, A.I. Ancharov, B.P. Tolochko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.G., Eselevich, D.A., Popov, N.A. et al. Oxidation of ASD-4 Powder Modified by V2O5. Combust Explos Shock Waves 54, 58–63 (2018). https://doi.org/10.1134/S0010508218010094

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218010094

Keywords

Navigation