Skip to main content
Log in

Detection of Particle Ejection from Shock-Loaded Metals by Synchrotron Radiation Methods

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The mass distribution along a flow of microparticles is measured by methods of synchrotron radiation generated by the VEPP-3 collider. The use of the soft spectrum of radiation allows microparticle flows to be measured with a record-beating (minimum) specific density (1 mg/cm3). Simultaneous recording of microparticle flows by piezoelectric sensors offers a possibility of comparisons and extension of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Mikhailov, V. L. Ogorodnikov, V. S. Sasik, et al., “Experimental and Numerical Modeling of Particle Ejection from a Shock-Loaded Surface,” Zh. Eksp. Teor. Fiz. 145 (5), 892–905 (2014).

    Article  Google Scholar 

  2. V. A. Ogorodnikov, A. G. Ivanov, A. L. Mikhailov, et al., “Particle Ejection from the Shocked Free Surface of Metals and Diagnostic Methods for these Particles,” Fiz. Goreniya Vzryva 34 (6), 103–107 (1998) [Combust., Expl., Shock Waves 34 (6), 696–700 (1998)].

    Google Scholar 

  3. A. L. Mikhailov, V. A. Ogorodnikov, V. S. Sasik, et al., “Experimental Study of Particle Ejection from a Shock-Loaded Surface,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), p.564.

    Google Scholar 

  4. V. A. Ogorodnikov, A. L. MIkhailov, V. V. Burtsev, et al., “Registration of Particle Ejection from the Free Surface of Shock-Loaded Specimens,” Zh. Eksp. Teor. Fiz. 136 (3(9)), 615–620 (2009).

    Google Scholar 

  5. L. Signor, E. Lescoute, D. Loison, et al., “Experimental Study of Dynamic Fragmentation of Shock-Loaded Metals below and above Melting,” EPJ Web Conf. 6, 39012 (2010).

    Article  Google Scholar 

  6. T. de Rességuier, D. Loison, E. Lescoute, et al., “Dynamic Fragmentation of Laser Shock-Melted Metals: Some Experimental Advances,” J. Theor. Appl. Mech. 48 (4), 957–972 (2010).

    Google Scholar 

  7. M. B. Zellner, G. Dimonte, T. C. Germann, et al., “Influence of ShockWave Profile on Ejecta,” J. Appl. Phys. 101, 063547 (2007).

    Article  Google Scholar 

  8. M. B. Zellner, M. Byers, J. E. Hammerberg, et al., “Influence of Shock Wave Profile on Ejection of Micron-Scale Material from Shocked Sn Surfaces: An Experimental Study,” in Proc. of Dynamic Materials Conf., Brussels, Belgium, 2009.

  9. A. V. Fedorov, A. L. Mikhailov, S. A. Finyushin, et al., “Recording the Particle Velocity Spectrum at the Time the Shock Wave Reaches the Surface of Liquids of Different Viscosities,” Fiz. Goreniya Vzryva 52 (4), 122–128 (2016) [Combust., Expl., Shock Waves 52 (4), 482–487 (2016)].

    Google Scholar 

  10. A. V. Fedorov, A. L. Mikhailov, L. K. Antonyuk, and I. V. Shmelev, “Experimental Study of the Stripping Breakup of Droplets and Jets after their Ejection from a Liquid Surface,” Fiz. Goreniya Vzryva 52 (4), 115–121 (2016) [Combust., Expl., Shock Waves 52 (4), 476–481 (2016)].

    Google Scholar 

  11. D. S. Sorenson, P. Pazuchanics, R. Johnson, et al., “Ejecta Particle-Size Measurements in Vacuum and Helium Gas Using Ultraviolet In-Line Fraunhofer Holography,” Report No. LA-UR-14-24722 (Los Alamos. Natl. Lab., 2014).

    Google Scholar 

  12. M. V. Antipov, I. V. Yurtov, A. A. Utenkov, et al., “Application of the Piezoelectric Method for Measuring the Parameters of Shock-Induced Dusty Flows,” in Proc. XIX KharitonScientific Readings (VNIIEF, Sarov, 2017).

    Google Scholar 

  13. W. S. Vogan, W. W. Anderson, M. Grover, et al., “Piezoelectric Characterization of Ejecta from Shocked Tin Surfaces,” J. Appl. Phys. 98, 113508 (2005).

    Article  ADS  Google Scholar 

  14. M. V. Antipov, A. B. Georgievskaya, V. V. Igonin, et al., “Results of Studying Particle Ejection from the Free Surface of Metals under the Shock Wave Action,” in Proc. XVII Khariton Scientific Readings (VNIIEF, Sarov, 2015), p.702.

    Google Scholar 

  15. W. T. Buttler, D. M. Oro, D. L. Preston, et al., “The Study of High-Speed Surface Dynamics Using a Pulsed Proton Beam,” in AIP Conf. Proc. on the Shock Compression of Condensed Matter, Report No. LA-UR-2011-04269 (Los Alamos Natl. Lab., 2011).

    Google Scholar 

  16. K. A. Ten, E. R. Pruuel, A. O. Kashkarov, et al., “Detection of Microparticles in Dynamic Processes,” J. Phys.: Conf. Ser. 774 (1), 012070 (2016).

    Google Scholar 

  17. K. A. Ten, E. R. Pruuel, A. O. Kashkarov, et al., “Synchrotron Radiation Methods for Registration of Particles Ejected from Free Surface of Shock-LoadedMetals,” Phys. Procedia 84, 366–373 (2016).

    Article  ADS  Google Scholar 

  18. K. J. Ramos, B. J. Jensen, A. J. Iverson, et al., “In Situ Investigation of the Dynamic Response of Energetic Materials Using IMPULSE at the Advanced Photon Source,” J. Phys.: Conf. Ser. 500, 142028 (2014).

    Google Scholar 

  19. N. A. Popov, V. A. Shcherbakov, V. N. Mineev, et al., “On Thermonuclear Fusion during a Spherical Charge Explosion (Problem of Gas-Dynamic Thermonuclear Fusion),” Usp. Fiz. Nauk 178 (10), 1087–1094 (2008).

    Article  Google Scholar 

  20. M. V. Astashkin, V. K. Baranov, A. B. Georgievskaya, et al., “Instability of the Free Boundary of a Water Layer Accelerated by the Taylor Wave,” Pis’ma Zh. Eksp. Teor. Fiz. 99 (3), 146–148 (2014).

    Google Scholar 

  21. S. V. Mikhailov, A. S. Tyapin, B. S. Serov, and V. V. Rudenko, “Kinetic Model of Spalling Fracture of Materials under the Conditions of a High-Intensity Shock-Wave Action,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), p.420.

    Google Scholar 

  22. A. B. Georgievskaya and V. A. Raevskii, “Effect of the Shock Wave Profile on the Size Distribution of Particles Ejected from the Free Surface of Metals under the Shock Wave Action (Numerical and Theoretical Study),” in Proc. XVII Khariton Scientific Readings (VNIIEF, Sarov, 2015), p.709.

    Google Scholar 

  23. M. V. Antipov, A. B. Georgievskaya, V. V. Igonin, et al., “Numerical MOdeling of Particle Ejection from a Shock-Loaded Surface,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), p.666.

    Google Scholar 

  24. K. V. Bandurkin, V. G. Kamenev, G. V. Kaplyukov, et al., “Experimental (Laser Interferometry Method, PDV) and Numerical Investigations of Motion of Disperse Phase Particles,” Fiz.-Khim. Kinet. Gaz. Din. 16 (4), 1–14 (2015).

    Google Scholar 

  25. V. V. Mokhova, A. L. Mikhailov, A. V. Til’kunov, et al., “Mechanisms of Fracture of the Free Surface of Shock-Compressed Metals,” Zh. Eksp. Teor. Fiz. 148 (6), 1146–1154 (2015).

    Google Scholar 

  26. V. V. Mokhova, A. L. Mikhailov, A. V. Til’kunov, et al., “Fracture of the Free Surface of Shock-Compressed Metals with Artificial Grooves,” in Proc. XVII Khariton Scientific Readings (VNIIEF, Sarov, 2015), p.307.

    Google Scholar 

  27. B. A. Kullback, G. Terrones, M. O. Carrara, and M. R. Hajj, “Quantification of Ejecta from Shock Loaded Metal Surfaces,” in Proc. on Shock Compression Conf., Chicago, 2011.

  28. E. B. Levichev, “Status and Perspectives of VEPP-4 Complex (in Russian),” Phys. Part. Nuclei Lett. XIII (7), (2016).

    Google Scholar 

  29. E. R. Pruuel, K. A. Ten, B. P. Tolochko, et al., “Realization of Capabilities of Synchrotron Radiation in Detonation Investigations,” Dokl. Akad. Nauk 448 (1), 38–42 (2013).

    Google Scholar 

  30. V. M. Titov, E. R. Pruuel, K. A. Ten, et al., “Experience of Using Synchrotron Radiation for Studying Detonation Processes,” Fiz. Goreniya Vzryva 47 (6), 3–16 (2011) [Combust., Expl., Shock Waves 47 (6), 615–626 (2011)].

    Google Scholar 

  31. V. M. Aulchenko, A. E. Bondar, V. N. Kudryavtsev, et al., “GEM-Based Detectors for SR Imaging and Particle Tracking,” J. Instrum. 7 (3), 1–18 (2012).

    Google Scholar 

  32. L. I. Shekhtman, V. M. Aulchenko, V. N. Kudryavtsev, et al., “Upgrade of the Detector for Imaging of Explosions,” Phys. Procedia 84, 189–196 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Ten.

Additional information

Original Russian Text © K.A. Ten, E.R. Pruuel, A.O. Kashkarov, I.A. Rubtsov, M.V. Antipov, A.B. Georgievskaya, A.L. Mikhailov, I.A. Spirin, V.M. Aulchenko, L.I. Shekhtman, V.V. Zhulanov, B.P. Tolochko.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 5, pp. 103–111, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ten, K.A., Pruuel, E.R., Kashkarov, A.O. et al. Detection of Particle Ejection from Shock-Loaded Metals by Synchrotron Radiation Methods. Combust Explos Shock Waves 54, 606–613 (2018). https://doi.org/10.1134/S0010508218050143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218050143

Keywords

Navigation