Skip to main content
Log in

Theoretical and experimental study of a method for the protection of spacecraft from high–speed particles

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

In this paper, we perform numerical simulation and experimental determination of the limiting resistance of the spacecraft design elements used when developing anti-meteorite protection of spacecraft as well as protection against space debris. One possible way to increase the efficiency of protective shields and satisfy the requirements of the mass characteristics of the latter is the use of mesh barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whipple, F.L., Meteorites and space travel, Astron. J., 1947, no. 1161, p. 131.

    Article  Google Scholar 

  2. Shumikhin, T.A., Bezrukov, L.N., and Myagkov, N.N., A model experiment elucidating the mechanism of fragmentation of high-speed bumper on discrete screens, Mekh. Kompoz. Mater. Konstr., 2007, vol. 13, no. 3, pp. 341–355.

    Google Scholar 

  3. Christiansen, E.L., Advanced meteoroid and debris shielding concepts, 1990, AIAA Paper 90-1336.

    Book  Google Scholar 

  4. Christiansen, E.L. and Kerr, J.H., Mesh doublebumper shield. A low-weight alternative for spacecraft meteoroid and orbital debris protection, Int. J. Impact Eng., 1993, vol. 14, nos. 1–4, pp. 169–180.

    Article  Google Scholar 

  5. Horz, F., Cintala, M., See, T., et al., Comparison of continuous and discontinuous collisional bumpers: Dimensionally scaled impact experiments into single wire meshes, NASA/TM, 1992, no. 104749.

  6. Shumikhin O., Semenov, A., Bezrukov, L., Malkin, A., Myagkov, N., and Kononenko, M., On fragmentation of aluminum projectile on mesh bumpers, Proceedings of the Fourth European Conference on Space Debris, 18–20 April 2005, Darmstadt, Germany: ESA/ESOC, 2005, p. 471.

    Google Scholar 

  7. Bezrukov, L.N., Shumikhin, T.A., and Myagkov, N.N., Ballistic properties of mesh protective constructions at high-speed bumping, Mekh. Kompoz. Mater. Konstr., 2008, vol. 14, no. 2, pp. 202–216.

    Google Scholar 

  8. Wilkins, M.L., Calculation of elastic plastic flow, in Methods in Computational Physics, Alder, B., Ed., New York: Academic, 1964, pp. 211–263.

    Google Scholar 

  9. Wilkins, M.L., Modelling the behavior of materials, in Proceedings of the International Conference on Structural Impact and Crashworthiness, 16–20 July 1984, London: Elsevier Applied Science, 1984, vol. 2, pp. 243–277.

    Google Scholar 

  10. Bjork, R.L., Kreyenhagen, K.N., Piechocki, J.J., and Wagner, M.H., Ballistic limit determination in impacts on multimaterial laminated targets, AIAA J., 1970, vol. 8, no. 12, pp. 2147–2151.

    Article  ADS  Google Scholar 

  11. Johnson, G.R., Colby, D.D., and Vavrick, D.J., Treedimensional computer code for dynamic response of solids to intense impulsive loads, Int. J. Numer. Methods Eng., 1979, vol. 14, no. 12, pp. 1865–1871.

    Article  MATH  Google Scholar 

  12. Johnson, G.R., Dynamic analysis of explosive-metal interaction in three dimensions, Trans. ASME, J. Appl. Mech., 1981, vol. 48, no. 1, pp. 30–34.

    Article  ADS  Google Scholar 

  13. Glazyrin, V.P., Orlov, Yu.N., and Orlov, M.Yu., Modelirovanie razrusheniya materialov pri udare i vzryve, Vestn. Akad. Voennykh Nauk, 2008, no. 3, pp. 94–98.

    Google Scholar 

  14. Teoreticheskie i eksperimental’nye issledovaniya vysokoskorostnogo vzaimodeistviya tel (Theoretical and Experimental Studies on High-Speed Interaction of Bodies), Gerasimov, A.V., Ed., Tomsk: Tomsk. univ., 2007.

  15. Diep, Q.B., Moxnes, J.F., and Nevstad, G., Fragmentation of projectiles and steel rings using 3D numerical simulations, in Proceedings of the 21th International Symposium on Ballistics, 19–23 April 2004, Adelaide, Australia, pp. 752–758.

    Google Scholar 

  16. Gerasimov, A.V. and Pashkov, S.V., Numerical simulation of penetration in layered targets, Mekh. Kompoz. Mater. Konstr., 2013, vol. 19, no. 1, pp. 49–62.

    Google Scholar 

  17. Gerasimov, A.V., Pashkov, S.V., and Khristenko, Yu.F., Space vehicle protection from man-caused and natural debris—Experiment and numerical simulation, Vestn. Tomsk. Gos. Univ.: Mat. Mekh., 2011, no. 4, pp. 70–78.

    Google Scholar 

  18. Gerasimov, A.V., Zharovtsev, V.V., and Khristenko, Yu.F., RF Patent no. 2400687, Byull., 2010, no. 27.

    Google Scholar 

  19. Khristenko, Yu.F., The problem of obtaining high velocities of bumpers and models in laboratory conditions, in Vserossiiskaya konferentsiya “Fundamental’nye i prikladnye problemy sovremennoi mekhaniki” (All- Russian Conference “Fundamental and Applied Problems in Modern Mechanics”), Tomsk: Tomsk. gos. univ., 1998, pp. 211–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gerasimov.

Additional information

Original Russian Text © A.V. Gerasimov, D.B. Dobritsa, S.V. Pashkov, Yu.F. Khristenko, 2016, published in Kosmicheskie Issledovaniya, 2016, Vol. 54, No. 2, pp. 126–134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, A.V., Dobritsa, D.B., Pashkov, S.V. et al. Theoretical and experimental study of a method for the protection of spacecraft from high–speed particles. Cosmic Res 54, 118–126 (2016). https://doi.org/10.1134/S0010952516020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952516020015

Keywords

Navigation