Skip to main content
Log in

Unsteady layered vortical fluid flows

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

An exact time-dependent solution of the system of Navier–Stokes equations governing large-scale viscous vortical incompressible flows is derived. The solution generalizes that describing the Couette flow. Two ways of preassigning the boundary conditions at the upper boundary of a fluid layer are considered. These are the time-dependent variation of the velocity value with the conservation of its direction and the variation of the angle at which the velocities parallel to the coordinate axes are directed. It is shown that at certain values of vorticity, viscosity, and the layer thickness the velocities within the layer can be severalfold greater than the given velocity at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987).

    MATH  Google Scholar 

  2. S. N. Aristov, D. E. Knyazev, and A. D. Polyanin, “Exact Solutions of the Navier–Stokes Equations with the Linear Dependence of Velocity Components on Two Spatial Variables,” Teor. Osnovy Khim. Tekhnol. 43, 547 (2006).

    Google Scholar 

  3. P. G. Drazin and N. Riley, The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge Univ. Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  4. R. E. Hewitt, P. M. Duck, and M. Al-Azhari, “Extensions to Three-Dimensional Flow in a Porous Channel,” Fluid Dyn. Res. 33, 17 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. F. Margues, J. Sanchez, and P. D. Weidman, “Generalized Couette–Poiseuille Flow with Boundary Mass Transfer,” J. Fluid Mech. 374, 221 (1998).

    Article  ADS  MATH  Google Scholar 

  6. V. V. Pukhnachev, “Symmetries in the Navier–Stokes Equations,” Usp. Mekh. No. 6, 3 (2006).

    Google Scholar 

  7. M. Couette, “Etudes sur le frottement des liquides,” Ann. Chim. Phys. 21, 433 (1890).

    MATH  Google Scholar 

  8. V. V. Pukhnachev and T. P. Pukhnacheva, “Couette Problem for the Kelvin–Feucht Medium,” Vestn. Novosibirsk Gos. Un-ta Ser. Mat. Mekh. Inf. 10(3), 94 (2010).

    MATH  Google Scholar 

  9. O. I. Skul’skii and S. N. Aristov, Mechanics of Anomalously Viscous Fluids [in Russian], Izhevsk (2003).

    Google Scholar 

  10. N. A. Belyaeva and K. P. Kuznetsov, “Analysis of the NonlinearDynamicModel of the Couette Flow of a Structured Fluid in a Plane Gap,” Vestn. Samara Gos. Tekhn. Un-ta Ser. Fiz. Mat. Nauk No. 2, 85 (2012).

    Article  MATH  Google Scholar 

  11. S. L. Gavrilenko, S. V. Shil’ko, and R. A. Vasin, “Determining the Viscoplastic Material Parameters under the Couette Flow Conditions,” Zh. Prikl. Mekh. Tekhn. Fiz. 43 3, 117 (2002).

    MATH  Google Scholar 

  12. V. I. Protsenko and I. G. Protsenko, “Asymptotic Model of Perturbation Evolution in the Plane Couette–Poiseuille Flow,” Dokl. Ross. Akad. Nauk 411, 20 (2006).

    MathSciNet  MATH  Google Scholar 

  13. O. V. Troshkin, “On the Nonlinear Stability of the Couette, Poiseuille, and Kolmogorov Flows in a Plane Channel,” Dokl. Ross. Akad. Nauk 443, 29 (2012).

    MathSciNet  MATH  Google Scholar 

  14. V. Ya. Rudyak, E. B. Isakov, and E. G. Bord, “Instability of the Plane Two-Phase Couette Flow,” Pisma Zh. Tekhn. Fiz. 24 5, 76 (1998).

    Google Scholar 

  15. D. A. Shalybkov, “Hydrodynamic and Hydromagnetic Stability of the Couette Flow,” Usp. Fiz. Nauk 179, 971 (2009).

    Article  Google Scholar 

  16. D. V. Georgievskii, “Generalized Josepf Estimates of the Stability of Plane Shear Flows with Scalar Nonlinearity,” Izv. Ross. Akad. Nauk. Ser. Fiz. 75, 149 (2011).

    MathSciNet  Google Scholar 

  17. S. A. Boronin, “Stability of the Plane Couette Flow of a Disperse Medium with a Finite Volume Fraction of the Particles,” Fluid Dynamics 46 1, 64 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. A. Kudinov and I. V. Kudinov, “Derivation of Exact Analytical Solutions of the Hyperbolic Equations of Motion in the Case of Accelerated Couette Flow,” Izv. Ross. Akad. Nauk. Energetika No. 1, 119 (2012).

    Google Scholar 

  19. V. A. Babkin, “Plane Turbulent Couette Flow,” Inzh. -Fiz. Zh. 76 6, 49 (2003).

    Google Scholar 

  20. A. K. Abramyan, L. V. Mirantsev, and A. Yu. Kuchmin, “Modeling the Couette Flow of a Simple Fluid in a Plane Channel of Nanodimensional Height,” Matem. Model. 24 4, 3 (2012).

    MATH  Google Scholar 

  21. V. A. Malyshev and A. D. Manita, “Stochastic Micromodel of the Couette Flow,” Teor. Veroyatn. Primen. 53, 798 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. C. C. Lin, “Note on a Class of Exact Solutions in Magneto-Hydrodynamics,” Arch. Ration. Mech. Anal. 1, 391 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. V. Meleshko and V. V. Pukhnachev, “On a Class of Partially Invariant Solutions of the Navier–Stokes Equations,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 2, 24 (1999).

    MathSciNet  MATH  Google Scholar 

  24. S. N. Aristov and E. Yu. Prosviryakov, “Inhomogeneous Couette Flows,” Nelin. Din. 10(2), 177 (2014).

    Article  MATH  Google Scholar 

  25. S. N. Aristov and E. Yu. Prosviryakov, “Stokes Waves in a Vortical Fluid,” Nelin. Din. 10(3), 1 (2014).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Prosviryakov.

Additional information

Original Russian Text © S.N. Aristov, E.Yu. Prosviryakov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 2, pp. 25–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, S.N., Prosviryakov, E.Y. Unsteady layered vortical fluid flows. Fluid Dyn 51, 148–154 (2016). https://doi.org/10.1134/S0015462816020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816020034

Keywords

Navigation