Skip to main content
Log in

Entropy Effect in Laminar-Turbulent Transition of the Supersonic Boundary Layer in the Wake of an Isolated Roughness

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

The effect of the entropy layer generated by a small bluntness of the leading edge of a flat plate on laminar-turbulent transition of the supersonic boundary layer in the wake of an isolated roughness element (straight cylinder, 1 mm in diameter and 1 mm in height) situated on the plate surface is experimentally investigated. The bluntness radius varies. The experiments are performed at the Mach number 6 in the Reynolds number range (0.46–2.33) × 106, where the Reynolds number is based on the roughness location and the oncoming flow parameters. The reversal behavior of the roughness-induced turbulent wedges with increase in the bluntness is first revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFRENCES

  1. M. V. Morkovin, E. Reshotko, and Th. Herbert, “Transition in open flow systems: a reassessment,” Bull. Amer. Phys. Soc. 39(9), 1–31 (1994).

    Google Scholar 

  2. D. C. Reda, “Review and synthesis of roughness-dominated transition correlations for reentry applications,” J. Spacecraft Rockets 39(2), 161–167 (2002).

    Article  ADS  Google Scholar 

  3. S. P. Schneider, “Effects of roughness on hypersonic boundary-layer transition,” J. Spacecraft Rockets 45(2), 193–209 (2008).

    Article  ADS  Google Scholar 

  4. P. M. Danehy, A. P. Garcia, S. Borg, A. A. Dyakonov, S. A. Berry, J. A. Inman, and D. W. Alderfer, “Fluorescence visualization of hypersonic flow past triangular and rectangular boundary-layer trips,” AIAA Paper 2007-536 (2007).

  5. P. Danehy, C. Ivey, J. Inman, B. Bathel, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, T. Meyer, and A. C. McCrea, “High-speed PLIF imaging of hypersonic transition over discrete cylindrical roughness,” AIAA Paper 2010-703 (2010).

  6. B. Bathel, P. Danehy, S. Jones, C. Johansen, and C. Goyne, “Trip-induced transition measurements in a hypersonic boundary layer using molecular tagging velocimetry,” AIAA Paper 2013-0042 (2013).

  7. K. M. Casper, H. B. Johnson, and S. P. Schneider, “Effect of freestream noise on roughness-induced transition for a slender cone.” J. Spacecraft Rockets 48(3), 406–413 (2011).

    Article  ADS  Google Scholar 

  8. B. M. Wheaton and S. P. Schneider, “Roughness-induced instability in a hypersonic laminar boundary layer,” AIAA J. 50(6), 1245–1256 (2012).

    Article  ADS  Google Scholar 

  9. B. M. Wheaton and S. P. Schneider, “Hypersonic boundary-layer instabilities due to near-critical roughness,” J. Spacecraft Rockets 51(1), 327–342 (2014).

    Article  ADS  Google Scholar 

  10. D. C. Reda, M. C. Wilder, and D. K. Prabhu, “Transition experiments on blunt bodies with isolated roughness elements in hypersonic flight,” J. Spacecraft Rockets 47(5) 828–835 (2010).

    Article  ADS  Google Scholar 

  11. A. S. Skuratov and A. V. Fedorov, “Experimental investigation of laminar-turbulent transition behind a three-dimensional roughness element in the boundary layer on a sharp cone,” Fluid Dynamics 25(4), 544–549 (1990).

    Article  ADS  Google Scholar 

  12. V. Ya. Borovoy, A. S. Skuratov, and I. V. Struminskaya, “On the existence of a threshold value of the plate bluntness in the interference of an oblique shock with boundary and entropy layers,” Fluid Dynamics 43(3), 369—379 (2008).

    Article  ADS  Google Scholar 

  13. V. Ya. Borovoy, V. E. Mosharov, A. Yu. Noev, and V. N. Radchenko, “Laminar-turbulent flow over wedges mounted on sharp and blunt plates,” Fluid Dynamics 44(3), 382—396 (2009).

    Article  ADS  Google Scholar 

  14. V. Ya. Borovoy, I. V. Egorov, V. E. Mosharov, A. Yu. Noev, V. N. Radchenko, A. S. Skuratov, and I. V. Struminskaya, “3D shock/turbulent boundary layer interaction on the plate near a wedge in presence of an entropy layer,” TsAGI Science J. 43(6), 697—719 (2012).

    Article  Google Scholar 

  15. V. Ya. Borovoy, I. V. Egorov, V. E. Mosharov, V. N. Radchenko, A. S. Skuratov, and I. V. Struminskaya, “Interaction of intersecting shocks with a flat-plate boundary layer in the presence of an entropy layer,” Fluid Dynamics 48(5), 636—647 (2013).

    Article  Google Scholar 

  16. P. V. Chuvakhov, I. V. Egorov, H. Olivier, and A. Roghelia, “Joint influence of high entropy layer and Goertler vortices on heat transfer in supersonic compression ramp flow,” Computational Thermal Sciences: An International J. 8(6), 543–553 (2016).

    Article  Google Scholar 

  17. P. V. Chuvakhov, V. Ya. Borovoy, I. V. Egorov, V. N. Radchenko, H. Olivier, and A. Roghelia, “Effect of small bluntness on formation of Görtler vortices in a supersonic compression corner flow,” J. Appl. Mech. Techn. Phys. 58(6), 975—989 (2017).

    Article  ADS  Google Scholar 

  18. A. Roghelia, P. V. Chuvakhov, H. Olivier, and I. V. Egorov, “Experimental investigation of Görtler vortices in hypersonic ramp flows behind sharp and blunt leading edges,” AIAA Paper 2017-3463 (2017).

  19. W. D. McCauley, A. R. Saydah, and J. F. Bueche, “Effect of spherical roughness on hypersonic boundary-layer transition,” AIAA J. 4(12), 2142–2148 (1966).

    Article  ADS  Google Scholar 

  20. P. F. Holloway and E. L. Morrisette, “Roughness effect on boundary-layer transition for blunt-leading-edge plates at Mach 6,” NASA Technical Note D-3517 (1966).

  21. P. C. Stainback, “Effect of unit Reynolds number, nose bluntness, angle of attack, and roughness on transition on a 5° half-angle cone at Mach 8,” NASA Technical Note D-4961 (1969).

  22. J. L. Potter and J. D. Whitfield, “Effects of slight nose bluntness and roughness on boundary-layer transition in supersonic flow,” J. Fluid Mech. 12(4), 501–535 (1962).

    Article  ADS  Google Scholar 

  23. P. V. Chuvakhov, “Controlled experiment on isolated roughness-induced transition in sharp flat plate hypersonic flows,” AIP Conf. Proc. 2027, 030160. 2018. 19th Int. Conf. Methods of Aerophysical Research (ICMAR 2018), Novosibirsk, Russia.

  24. V. Borovoy, V. Mosharov, A. Noev, and V. Radchenko, “Temperature sensitive paint application for investigation of boundary layer transition in short-duration wind tunnels,” Progress in Flight Physics 3, 15–24 (2012).

    Article  Google Scholar 

  25. K. F. Stetson and G. H. Rushton, “Shock tunnel investigation of boundary-layer transition at M = 5.5,” AIAA J. 5(5), 899–906 (1967).

    Article  ADS  Google Scholar 

  26. K. F. Stetson, “Nosetip bluntness effects on cone frustum boundary layer transition in hypersonic flow,” AIAA Paper 83-1763 (1983).

  27. V. N. Brazhko, A. V. Vaganov, N. A. Kovaleva, N. P. Kolina, and I. I. Lipatov, “experimental and numerical investigations of boundary layer transition on blunted cone at supersonic flow,” TsAGI Science J. 40(3), 309—319 (2009).

    Article  Google Scholar 

  28. E. A. Aleksandrova, A. V. Novikov, S. V. Utyuzhnikov, and A. V. Fedorov, “Experimental study of the laminar-turbulent transition on a blunt cone,” J. Appl. Mech. Techn. Phys. 55(3), 375—385 (2014).

    Article  ADS  Google Scholar 

  29. A. Vaganov, A. Noev, V. Radchenko, A. Skuratov, and A. Shustov, “Laminar–turbulent transition reversal on blunt ogive body of revolution at hypersonic speeds,” Proc. Inst. Mechanical Engineers, Pt. G: J. Aerospace Engineering (2018).https://doi.org/10.1177/0954410018788737

  30. G. S. Simeonides, “Correlation of laminar-turbulent transition data over flat plates in supersonic/hypersonic flow including leading edge bluntness effects,” Shock Waves 12(6), 497–508 (2003).

    Article  ADS  Google Scholar 

  31. I. V. Egorov and A. V. Novikov, “Direct numerical simulation of laminar-turbulent flow over a flat plate at supersonic flow speeds,” Comp. Math. Math. Phys. 56(6), 1048—1064 (2016).

    Article  Google Scholar 

  32. E. R. Van Driest and C. B. Blumer, “Boundary-layer transition at supersonic speeds—three-dimensional roughness effects (spheres),” J. Aerospace Sci. 29(8), 909–916 (1962).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author wishes to thank V. N. Radchenko for assistance in performing the experiments and in the primary data processing.

Funding

The study was supported by the Russian Science Foundation, project no. 17-79-10433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Chuvakhov.

Ethics declarations

The Author declares no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvakhov, P.V. Entropy Effect in Laminar-Turbulent Transition of the Supersonic Boundary Layer in the Wake of an Isolated Roughness. Fluid Dyn 55, 62–73 (2020). https://doi.org/10.1134/S0015462820010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820010048

Keywords:

Navigation