Skip to main content
Log in

Magmatic sources of dikes and veins in the Moncha Tundra Massif, Baltic Shield: Isotopic-geochronologic and geochemical evidence

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The dike-vein complex of the Moncha Tundra Massif comprises dolerites, gabbro-pegmatites, and aplites. The dolerite dikes are classified into three groups: high-Ti ferrodolerites, ferrodolerites, low-Ti and low-Fe gabbro-dolerites. The U-Pb age of the ferrodolerites is 2505 ± 8 Ma, and the amphibole-plagioclase metagabbroids hosting a ferrodolerite dike are dated at 2516 ± 12 Ma. Data on the U-Pb isotopic system of zircon from the gabbro-pegmatites and titanite from the aplites indicate that the late magmatic evolution of the Moncha Tundra Massif proceeded at 2445 ± 1.7 Ma, and the youngest magmatic events in the massif related to the Svecofennian orogeny occurred at 1900 ± 9 Ma. The data obtained on the Sm-Nd and Rb-Sr isotopic systems and the distribution of trace elements and REE in rocks of the dike-vein complex of the massifs provide insight into the composition of the sources from which the parental magmas were derived. The high-Ti ferrodolerites were melted out of a deep-sitting plume source that contained an asthenospheric component. The ferrodolerites were derived from a mantle MORB-type source that contained a crustal component. The parental melts of the gabbro-dolerites were melted out of the lithospheric mantle depleted in incompatible elements after Archean crust-forming processes above an ascending mantle plume, with the participation of a crustal component. The gabbro-dolerites and the rocks of the layered complex of the Moncha Tundra Massif exhibit similar geochemical characteristics, which suggest that their parental melts could be derived from similar sources but with more clearly pronounced crustal contamination of the parental melts of the rocks of the massif itself. The geochemical traits of the gabbro-pegmatites are thought to be explained not only by the enrichment of the residual magmas in trace elements and a contribution of a crustal component but also by the uneven effect of sublithospheric mantle sources. The aplites were derived from a sialic crustal source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Mitrofanov, “Prospecting indicators of new economic-grade Rh-Pt-Pd, Co-Cu-Ni, and Cr deposits at the Kola Peninsula,” Otechestvennaya Geol., No. 4, 3–9 (2006).

    Google Scholar 

  2. Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, and Deep Structure, Ed. by F.P. Mitrofanov and V.F. Smol’kin (Izd. KNTs RAN, Apatity, 2004), Vol. 1 [in Russian].

    Google Scholar 

  3. A. A. Arzamastsev, Zh. A. Fedotov, and L. V. Arzamastseva, Dike Magmatism of the Northeastern Baltic Shield (Nauka, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  4. E. K. Kozlov, B. A. Yudin, and V. S. Dokuchaeva, Mafic and Ultranafic Complexes of the Moncha-Volch’iLosevy Tundras (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  5. T. B. Bayanova, L. I. Nerovich, F. P. Mitrofanov, P. A. Serov, and V. A. Zhavkov, “The Monchetundra basic massif of the Kola Region: new geological and isotope geochronological data,” Dokl. Earth Sci. 431(1), 288–293 (2010).

    Article  Google Scholar 

  6. T. Bayanova, J. Ludden, and F. Mitrofanov, “Timing and duration of Paleoproterozoic events producing orebearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications,” Geol. Soc. London Sp. Publ. 323, 165–198 (2009).

    Article  Google Scholar 

  7. L. I. Nerovich, T. B. Bayanova, E. E. Savchenko, P. A. Serov, and N. A. Ekimova, “New data on the geology, petrography, isotope geochemistry and PGE mineralization of the Moncha Tundra Massif,” Vestnik Murm. Gos. Tekhn. Univ. 12(3), 461–477 (2009).

    Google Scholar 

  8. V. I. Pozhilenko, B. V. Gavrilenko, D. V. Zhirov, and S. V. Zhabin, Geology of the Ore Districts of the Murmansk Region (Izd. KNTs RAN, Apatity, 2002) [in Russian].

    Google Scholar 

  9. T. E. Krogh, “A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations,” Geochim. Cosmohim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  10. T. B. Bayanova, Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  11. T. B. Bayanova, F. Corfu, V. Todt, U. Poller, N. V. Levkovich, E. A. Apanasevich, and V. A. Zhavkov, “Heterogeneity of 91500 and TEMORA-1 standards for single zircon dating,” in Processsing of 18th Vinogradov Symposium on Isotope Geochemistry, Moscow, Russia, 2007 (GEOKhI, Moscow, 2007), pp. 42–43 [in Russian].

    Google Scholar 

  12. J. S. Stasey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  Google Scholar 

  13. K. R. Ludwig, “ISOPLOT-a plotting and regression program for radiogenic-isotope data, Version 2.56,” US Geol. Surv. Open-file Rept. 91-445 (1991).

    Google Scholar 

  14. K. R. Ludwig, “ISOPLOT/Ex-a geochronological toolkit for Microsoft Excel, Version 2.05,” Berkeley Geochronol. Center Sp. Publ., No. 1a, (1999).

    Google Scholar 

  15. R. H. Steiger and E. Jager, “Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology,” Earth Planet. Sci. Lett. 36(3), 359–362 (1977).

    Article  Google Scholar 

  16. A. Z. Zhuravlev, D. Z. Zhuravlev, Yu. A. Kostitsyn, and I. V. Chernyshov, “Determination of Sm/Nd ratio for geochronological aims,” Geokhimiya, No. 8, 1115–1129 (1987).

    Google Scholar 

  17. D. J. De Paolo, “Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic,” Nature 291, 193–196 (1981).

    Article  Google Scholar 

  18. S. V. Panteeva, D. P. Gladkochoub, T. V. Donskaya, V. V. Markova, G. P. Sandimirova, “Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion,” Spectrochim. Acta, Part B: Atom. Spectroscop. 58(2), 341–350 (2003).

    Article  Google Scholar 

  19. Zh. A. Fedotov, P. A. Serov, and D. V. Elizarov, “Tholeiites from the depleted subcontinental mantle in the root zone of the Monchegorskii Pluton, Baltic Shield,” Dokl. Earth Sci. 429A(9), 1462–1466 (2009).

    Article  Google Scholar 

  20. K. Putirka, “Clinopyroxene+liquid equilibria to 100 kbar and 2450 K,” Contrib. Mineral. Petrol. 135, 151–163 (1999).

    Article  Google Scholar 

  21. I. D. Ryabchikov, “Mantle magmas as a sensor of the composition of deep geospheres,” Geol. Rudn. Mestorozhd. 47(6), 455–468 (2005).

    Google Scholar 

  22. A. W. Hofmann, “Mantle geochemistry: the message from oceanic volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  23. J. A. Pearce, “Role of the sub-continental lithosphere in magma genesis at active continental margins,” in Continental Basalts and Mantle Xenoliths: Papers Prepared for a UK Volcanic Studies Group Meeting at the University of Leicester (Shiva, Nantwich, 230–249).

  24. K. Y. Tomlinson and K. C. Condie, “Archean mantle plumes: evidence from greenstone belt geochemistry,” in Mantle Plumes: Their Identification Through Time, Geol. Soc. Am., Spec. Pap. 352, 341–358 (2001).

    Google Scholar 

  25. K. C. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?,” Lithos 79, 491–504 (2005).

    Article  Google Scholar 

  26. O. M. Turkina, Lectures on the Geochemistry of the Mantle and Continental Crust. A Textbook (Izd. Novosib. Gos. Univ., Novosibirsk, 2007) [in Russian].

    Google Scholar 

  27. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Chapter  Google Scholar 

  28. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Oceanic Basins, Ed. by A.D. Saunders and M.J. Norry, Geol. Soc. London, Spec. Publ, No. 42, 313–345 (1989).

    Google Scholar 

  29. V. F. Smol’kin, Early Precambrian Komatiitic and Picritic Magmatism of the Baltic Shield (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  30. Magmatism, Sedimentogenesis, and Geodynamics of the Pechenga Paleorift Structure, Ed. by F. P. Mitrofanov and V. F. Smol’kin (Izd. KNTs RAN, Apatity, 1995) [in Russian].

    Google Scholar 

  31. E. V. Sharkov, V. F. Smol’kin, V. B. Belyatskii, A. V. Chistyakov, and Zh. A. Fedotov, “Age of the Moncha Tundra Fault, Kola Peninsula: evidence from the Sm-Nd and Rb-Sr isotopic systematics of metamorphic assemblages,” Geochem. Int. 44(4), 317–326 (2006).

    Article  Google Scholar 

  32. D. J. Cherniak, “Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport,” Chem. Geol. 110, 177–194 (1993).

    Article  Google Scholar 

  33. B. R. Frost, K. R. Chamberlain, and J. C. Schumacher, “Sphene (titanite): phase relations and role as a geochronometer,” Chem. Geol. 172, 131–148 (2000).

    Article  Google Scholar 

  34. V. A. Melezhik and B. A. Sturt, “General geology and evolutionary history of the Early Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust-Ponoy greenstone belt in the northeastern Baltic Shield,” Earth-Sci. Rev. 36, 205–241 (1994).

    Article  Google Scholar 

  35. C. Dupuy, A. Michard, J. Dostal, D. Dautel, and W. R. A. Baregar, “Isotope and trace-element geochemistry of Proterozoic Natkusiak flood basalts from the Northwestern Canadian Shield,” Chem. Geol. 120, 15–25 (1995).

    Article  Google Scholar 

  36. G. L. Farmer, “Continental Basaltic Rocks,” Treatise Geochem. 3, 85–121 (2003).

    Google Scholar 

  37. J. H. Puffer, “Late Neoproterozoic Eastern Laurentian Superplume: location, size, chemical composition, and environmental impact,” Amer. J. Science 302, 1–27 (2002).

    Article  Google Scholar 

  38. A. A. Nosova, O. F. Kuz’menkova, N. V. Veretennikov, L. G. Petrova, and L. K. Levskii, “Neoproterozoic Volhynia-Brest magmatic province in the western East European Craton: within-plate magmatism in an ancient suture zone,” Petrology 16(2), 115–147 (2008).

    Article  Google Scholar 

  39. A. A. Shchipanskii, Subduction and Mantle-Plume Processes in the Geodynamics of the Formation of the Archean Greenstone Belts (Izd. LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  40. F. P. Lesnov, Rare-Earth Elements in the Ultramafic and Mafic Rocks and Their Minerals (Geo, Novosibirsk, 2007), vol. 1 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Nerovich.

Additional information

Original Russian Text © L.I. Nerovich, T.B. Bayanova, P.A. Serov, D.V. Elizarov, 2014, published in Geokhimiya, 2014, No. 7, pp. 605–624.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerovich, L.I., Bayanova, T.B., Serov, P.A. et al. Magmatic sources of dikes and veins in the Moncha Tundra Massif, Baltic Shield: Isotopic-geochronologic and geochemical evidence. Geochem. Int. 52, 548–566 (2014). https://doi.org/10.1134/S0016702914070052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914070052

Keywords

Navigation