Skip to main content
Log in

Dikes Deformation in Lakhshak Pluton: Microscopic Evidence from the Northeast of Zahedan, Southeastern Iran

  • Published:
Geotectonics Aims and scope

Abstract

Based on geological classification of Iran, Oligocene Lakhshak pluton is situated in the Sistan suture zone that composed of siliciclastic and ophiolitic melanges. The Lakhshak pluton is a host of numerous northeast dikes intruded the siliciclastic sediments. The pluton is granodiorite, granite, diorite, quartz diorite in composition. The dikes occur along shear zones and show moderate to high deformations. Dikes are mainly diorite and granodiorite in composition and consist of plagioclase, biotite, hornblende and quartz. The deformation evidences are quartz microboudines, mica fish (especially in biotite), and fractures in minerals, inflation in quartz, asymmetric porphyroclasts, preferred orientation and rotation of minerals. These evidences show that the dikes suffered from brittle to ductile deformation. Dynamic recrystallization of quartz and feldspar grains is mainly similar as bulge type. Mylonitic structures in the dikes probably formed between 300 and 500°C. Oriented thin sections, three-dimensional block diagram and field studies show dextral shears in dikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. Aghanabati, Geology of Iran (Geol. Surv. Iran, Tehran, 2004) [in Persian].

    Google Scholar 

  2. A. Behruzi, Geological Map of Zahedan 1 : 250 000, Sheet No. 5558 (Geol. Surv. Iran, Tehran, 1993).

  3. D. Berthe, P. Choukroune, and P. Jegouzo, “Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South Armorican shear zone,” J. Struct. Geol. 1, 31– 42 (1979).

    Article  Google Scholar 

  4. J. L. Bouchez, C. Delas, G. Gleizes, A. Nédélec, and M. Cuney, “Submagmatic microfractures in granites,” Geology 20, 35–38 (1992).

    Article  Google Scholar 

  5. K. Bucher and M. Frey, Petrogenesis of Metamorphic Rocks (Springer, New York, 1994).

    Book  Google Scholar 

  6. V. E. Camp and R. J. Griffis, “Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, Eastern Iran,” Lithos 3, 221‒329 (1922).

    Google Scholar 

  7. P. Choukroune and J. L. Lagarde, “Plans de schistosite et deformation rotationelle: l’exemple du gneiss de Champtoceaux (Massif Armoricain),” C. R. Acad. Sci. Paris, Ser. D 284, 2331‒2334 (1977).

    Google Scholar 

  8. J. F. Dewey, “Suture zone complexities: A review,” Tectonophysics 40, 67‒53 (1977).

    Article  Google Scholar 

  9. M. R. Drury and J. L. Urai, “Deformation-related recrystallisation processes,” Tectonophysics 172, 235‒253, (1990).

    Article  Google Scholar 

  10. G. H. Eisbacher, “Deformation mechanicss of mylonitic rocks and fractuated granites in Cobequid Mountains, Nova Scotia, Canada,” Bull. Geol. Soc. Am. 81, 2009‒2020 (1970).

    Article  Google Scholar 

  11. G. R. Fotoohi Rad, G. T. Droop, R. Amini, and M. S. Moazzen, “Eclogites and blueschists of the Sistan Suture Zone, eastern Iran: A comparison of P‒T histories from a subduction mélange,” Lithos 84, 1‒24 (2005).

    Article  Google Scholar 

  12. M. Ghasemi and M. Sadeghian, “Petrography, geochemistry and petrology of the Zahedan Granitoid dykes,” 8th Symposium of Geological Society of Iran (Shahrood Univ., Shahrood, 2004), pp. 18‒26. https://www.civilica.com/Paper-SGSI08-SGSI08_106. html. Accessed January 31, 2019.

  13. A. G. Goldestein, “Factors affecting the kinematic interpretation of asymmetric boudinage in shear zones,” J. Struct. Geol. 10, 707‒715 (1988).

    Article  Google Scholar 

  14. S. M. Grotenhuis, R. A. J. Trouw, and C. W. Passchier, “Evolution of mica fish in mylonitic rocks,” Tectonophysics 372, 1–21 (2003).

    Article  Google Scholar 

  15. S. Hanmer, “The potential use of planar and elliptical structures as indicators of strain regime and kinematics of tectonic flow,” in Vol. 84-1B of Geol. Surv. Can. Pap. (1984), pp. 133–142.

    Book  Google Scholar 

  16. M. Hazara, Geochemical Exploration Report in the Range of 1 : 100 000 Zahedan Map (Geol. Surv. of Sistan and Baluchestan Prov., Zahedan, 2005).

    Google Scholar 

  17. R. J. Hooper and R. D. Hatcher, “Mylonite from the Towaliga fault zone, central Georgia: Products of hetrogeneous non-coaxial deformation,” Tectonophysics 152, 1‒17 (1988).

    Article  Google Scholar 

  18. M. R. Hosseini, MS Thesis (Tehran, 2002).

  19. A. Kananian, M. K. Rezaei, M. Elias, and D. Ismaili, “Petrographic evidence of deformation at high temperature margin of Lakhshak granitoid rocks, Southwestern of Zahedan, Iran,” J. Sci. 1, 39‒47 (2016).

    Google Scholar 

  20. S. H. Kashtgar, MS Thesis (Tehran, 2004).

  21. M. M. Khatib, “Activity evaluation of Zahedan fault by morphotectonic invariant, East of Iran,” WSEAS International Conference on Geology and Seismology (2009). http://www.wseas.us/e-library/conferences/ 2009/cambridge/GES/GES12.pdf. Accessed January 31, 2019.

  22. G. S. Lister and A. W. Snoke, “S-C Mylonites,” J. Struct. Geol. 6, 617‒638 (1984).

    Article  Google Scholar 

  23. V. M. Mares and A. K. Krӧnenberg, “Experimental deformation of muscovite,” J. Struct. Geol. 15, 1061– 1075 (1993).

    Article  Google Scholar 

  24. H. Nabavi, An Introduction to Geology of Iran (Tehran, 1976) [in Persian].

    Google Scholar 

  25. M. Negahban, MS Thesis (Zahedan, Iran, 2006).

  26. C. W. Passchier and C. Simpson, “Porphyroclast systems as kinematic indicators,” J. Struct. Geol. 8, 831‒844 (1986).

    Article  Google Scholar 

  27. C. W. Passchier and R. A. J. Trouw, Microtectonics (Springer, Berlin, 1996).

    Google Scholar 

  28. M. Sadeghian, PhD Thesis (Tehran, 2004).

  29. M. Sadeghian, “Petrogenesis of Zahedan granitoid with emphasis to magma mixing role”, 24th Conference of the Geological Society of Iran (2005), pp. 18‒44. https://www.civilica.com. Accessed January 31, 2019.

  30. M. Sadeghian and M. Valizadah, “Petrology and geochemistry of Zahedan Granitoid,” 6th Conference of the Geological Society of Iran (Shahed Bahonar Univ., Kerman, 2002), pp. 20‒28.

  31. M. Sadeghian and M. Valizadah, “Replacement of Zahedan granitoid,” 8th Conference of the Geological Society of Iran (Shahrood Univ., Shahrood, 2004), pp. 85‒101. https://www.civilica.com/Paper-SGSI08-SGSI08_106.html. Accessed January 31, 2019.

  32. M. Sadeghian, J. L. Bouchez, A. Nédélec, R. Siqueira, and M. V. Valizadeh, “The granite pluton of Zahedan (SE Iran): A petrological and magnetic fabric study of a syntectonic sill emplaced in a transtensional setting,” J. Asian Earth Sci. 25, 301‒327 (2005).

    Article  Google Scholar 

  33. M. Sadeghian, M. Valizadah, and A. S. Barfi, “Metalogenic of Zahedan granitoid,” 9th Symposium of Geological Society of Iran (Kharazmi Univ., Tehran, 2005), pp. 240‒248.

  34. M. Sadeghian, J. Mahmood, L. Bouchez, A. Nédélec, A. Siqueira, and M. V. Valizadeh, “The granite pluton of Zahedan (SE Iran): A petrological and magnetic fabric study of a syntectonic sill emplaced in a transtensional setting,” J. Asian Earth Sci. 25, 327‒301 (2005).

    Article  Google Scholar 

  35. N. Sarhadi, MS Thesis (Zahedan, Iran, 2015).

  36. C. Simpson and S. M. Schmid, “An evaluation of criteria to deduce the sense of movement in sheared rocks,” Bull. Geol. Soc. Am. 94, 1281‒1288 (1983).

    Article  Google Scholar 

  37. M. Stipp, H. Stünitz, R. Heilbronner, and S. M. Schmid, “The eastern Tonale fault zone: A natural laboratory, for crystal plastic deformation of quartz over a temperature range from 250 to 700°C,” J. Struct. Geol. 24, 1861–1884 (2002).

    Article  Google Scholar 

  38. R. Tirrul, I. R. Bell, R. J. Griffis, and V. E. Camp, “The Sistan suture zone of Eastern Iran,” Bull. Geol. Soc. Am., 94, 134–150 (1983).

    Article  Google Scholar 

  39. M. J. Tyva, MS Thesis (Tehran, 2002).

  40. R. H. Vernon, “Evaluation of the quartz eye hypothesis,” Econ. Geol. 81, 1520–1527 (1986).

    Article  Google Scholar 

  41. J. L. Urai, P. F. Williams, and H. L. M. Roermund, “Kinematics of crystal growth in syntectonic fibrous veins,” J. Struct. Geol. 13, 823‒836 (1991).

    Article  Google Scholar 

  42. S. H. White, “Grain and sub-grain size variations across a mylonite zone,” Contrib. Mineral. Petrol. 70, 193‒202 (1979).

    Article  Google Scholar 

  43. SketchUp, 3D modeling software. https://www. sketchup.com. Accessed January 31, 2019.

Download references

ACKNOWLEDGMENTS

We thank Dr. Boomeri (Geology department of University of Sistan and Baluchestan, Zahedan, Iran) for leading and helping us. We are grateful to Prof. V. N. Puchkov (Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia) for reviewing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Biabangard.

Additional information

Reviewer: V. N. Puchkov

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biabangard, H., Moridi, A.A. & Irani, Z. Dikes Deformation in Lakhshak Pluton: Microscopic Evidence from the Northeast of Zahedan, Southeastern Iran. Geotecton. 53, 271–279 (2019). https://doi.org/10.1134/S001685211902002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001685211902002X

Keywords:

Navigation