Skip to main content
Log in

Exhumation Style of the Chapedony Core Complex (Central Iran): Insights from Kinematic Vorticity Analysis

  • Published:
Geotectonics Aims and scope

Abstract

Kinematic characteristics of mylonite rocks in the footwall of the Chapedony detachment shear zone was investigated to highlight the exhumation style of the Chapedony Metamorphic Core Complex, Central Iran. The mean kinematic vorticity value (Wm) was evaluated applying the rigid grain net technique on the mylonitic rocks of the metamorphic core complex. The results revealed Wm values ranged from 0.61 to 0.89 suggesting a general shear deformation with 23‒57% pure shear and 43‒77% simple shear, respectively. As a consequence of these conditions, the metamorphic rocks of the core complex was subjected to ductile thinning (0.11‒0.38 stretching) during the crustal extension. Mismatch of vorticity and strain values highlights that pure shear was dominant at the early stage of the core complex formation while simple shear becomes increasingly important towards the last stages of exhumation due to progressively unloading during uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Alavi, “Tectonics of the Zagros orogenic belt of Iran: New data and interpretations,” Tectonophysics 229, 211‒238 (1994).

    Article  Google Scholar 

  2. C. M. Bailey, B. E. Francis, and E. E. Fahrney, “Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA,” in Flow Processes in Faults and Shear Zones, Vol. 224 of Geol. Soc. London, Spec. Publ., Ed. by R. E. Holdsworth, K. J. W. McCaffrey, and M. Hand (2004), pp. 249‒264.

  3. C. M. Bailey and E. L. Eyster, “General shear deformation in the Pinaleño Mountains metamorphic core complex, Arizona,” J. Struct. Geol. 25, 1883‒1892 (2003).

    Article  Google Scholar 

  4. C. M. Bailey, L. E. Polvi, and A. M. Forte, “Pure shear dominated high-strain zones in basement terranes,” in 4-D Framework of Continental Crust, Vol. 200 of Geol. Soc. Am., Mem., Ed. by R. D. Hatcher, Jr., M. P. Carlson, J. H. McBride, and J. R. Martínez-Catalán (2007), pp. 93–108.

  5. M. Bestmann, K. Kunze, and A. Matthews, “Evolution of a calcite marble shear zone on Thassos Island, Greece: Microstructural and textural fabrics and their kinematic significance,” J. Struct. Geol. 22, 1789–1807 (2000).

    Article  Google Scholar 

  6. P. Bird, “Continental delamination and the Colorado Plateau,” J. Geophys. Res., B 84, 7561‒7571 (1979).

  7. J. P. Brun and D. Sokoutis, “Kinematics of the southern Rhodope core complex (North Greece),” Int. J. Earth Sci. 96, 1079‒1099 (2007).

    Article  Google Scholar 

  8. N. Charles, C. Gumiaux, R. Augier, Y. Chen, R. Zhu, and W. Lin, “Metamorphic core complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China),” J. Asian Earth Sci. 40, 261‒278 (2011).

    Article  Google Scholar 

  9. R. R. Compton, “Fabrics and strains in quartzites of a metamorphic core complex, Raft River Mountains, Utah,” in Cordilleran Metamorphic Core Complexes, Vol. 153 of Geol. Soc. Am., Mem., Ed. by P. J. Coney and G. H. Davis (1980), pp. 385–398.

  10. P. J. Coney, “Cordilleran metamorphic core complexes: An overview,” in Cordilleran Metamorphic Core Complexes, Vol. 153 of Geol. Soc. Am., Mem., Ed. by P. J. Coney and G. H. Davis (1980), pp. 7–34.

  11. G. H. Davis, “Shear-zone model for the origin of metamorphic core complexes,” Geology 11, 342‒347 (1983).

    Article  Google Scholar 

  12. G. H. Davis, “Structural characteristics of metamorphic core complexes, southern Arizona,” in Cordilleran Metamorphic Core Complexes, Vol. 153 of Geol. Soc. Am., Mem., Ed. by P. J. Coney and G. H. Davis (1980), pp. 35–77.

  13. G. H. Davis, G. S. Lister, and S. J. Reynolds, “Structural evolution of the Whipple and South mountains shear zones, southwestern United States,” Geology 14, 7‒10 (1986).

    Article  Google Scholar 

  14. A. Elmas, I. Yılmaz, E. Yiğitbas, and T. Ullrich, “A  Late Jurassic–Early Cretaceous metamorphic core complex, Strandja Massif, NW Turkey,” Int. J. Earth Sci. 100, 1251–1263 (2011).

    Article  Google Scholar 

  15. A. Faghih and M. Soleimani, “Quartz c-axis fabric development associated with shear deformation along an extensional detachment shear zone: Chapedony Metamorphic Core Complex, Central-East Iranian Microcontinent,” J. Struct. Geol. 70, 1‒11 (2015).

    Article  Google Scholar 

  16. A. M. Forte and C. M. Bailey, “Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis,” J. Struct. Geol. 29, 983‒1001 (2007).

    Article  Google Scholar 

  17. H. Fossen and B. Tikoff, “Forward modeling of non-steady-state deformations and the ‘minimum strain path’,” J. Struct. Geol. 19, 987‒996 (1997).

    Article  Google Scholar 

  18. W. Franke, M. P. Doublier, K. Klama, S. Potel, and K. Wemmer, “Hot metamorphic core complex in a cold foreland,” Int. J. Earth Sci. 100, 753‒785 (2011).

    Article  Google Scholar 

  19. T. V. Gerya, D. A. Yuen, and W. V. Maresch, “Thermomechanical modelling of slab detachment,” Earth Planet. Sci. Lett. 226, 101–116 (2004).

    Article  Google Scholar 

  20. D. Iacopini, R. Carosi, C. Montomoli, and C. W. Passchier, “Strain analysis and vorticity of flow in the Northern Sardinian Variscan Belt: Recognition of a partitioned oblique deformation event,” Tectonophysics 446, 77‒96 (2008).

    Article  Google Scholar 

  21. M. J. Jessup, R. D. Law, and C. Frassi, “The rigid grain net (RGN): An alternative method for estimating mean kinematic vorticity number (Wm),” J. Struct. Geol. 29, 411‒421 (2007).

    Article  Google Scholar 

  22. S. E. Johnson, H. J. Lenferink, J. H. Marsh, N. A. Price, P. O. Koons, and D. P. West, “Kinematic vorticity analysis and evolving strength of mylonitic shear zones: New data and numerical results,” Geology 37, 1075‒1078 (2009).

    Article  Google Scholar 

  23. F. Karagaranbafghi, J. P. T. Foeken, B. Guest, and F. M. Stuart, “Cooling history of the Chapedony metamorphic core complex, Central Iran: Implications for the Eurasia–Arabia collision,” Tectonophysics 524, 100‒107 (2012a).

    Article  Google Scholar 

  24. F. Kargaranbafghi, F. Neubauer, J. Genser, and A. Houshmandzadeh, “The Eocene Chapedony metamorphic core complex in central Iran: Preliminary structural results,” Geophys. Res. Abstr. 8, EGU06-A-05008 (2006).

    Google Scholar 

  25. F. Kargaranbafghi, F. Neubauer, J. Genser, A. Faghih, and T. Kusky, “Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation,” Tectonophysics 564, 83‒100 (2012b).

    Article  Google Scholar 

  26. A. Klepeis, N. R. Daczko, and G. L. Clarke, “Kinematic vorticity and tectonic significance of superposed mylonites in a major lower crustal shear zone, northern Fiordland, New Zealand,” J. Struct. Geol. 21, 1385–1405 (1999).

    Article  Google Scholar 

  27. G. A. Kurz and C. J. Northrup, “Structural analysis of mylonitic fault rocks in the Cougar Creek Complex, Oregone–Idaho using the porphyroclast hyperbolic distribution method, and potential use of SC 0-type extensional shear bands as quantitative vorticity indicators,” J. Struct. Geol. 30, 1005‒1012 (2008).

    Article  Google Scholar 

  28. R. D. Law, M. P. Searle, and R. L. Simpson, “Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet,” J. Geol. Soc. (London, U. K.) 161, 305–320 (2004).

    Article  Google Scholar 

  29. C. Li and D. Jiang, “A critique of vorticity analysis using rigid clasts,” J. Struct. Geol. 33, 203‒219 (2011).

    Article  Google Scholar 

  30. W. Lin and Q. C. Wang, “Late Mesozoic extensional tectonics in the North China block: A crustal response to subcontinental mantle removal,” Bull. Soc. Geol. Fr. 177, 287–297 (2006).

    Article  Google Scholar 

  31. G. S. Lister and G. A. Davis “The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA,” J. Struct. Geol. 11, 65‒94 (1989).

    Article  Google Scholar 

  32. Q. R. Meng, “What drove late Mesozoic extension of the northern China–Mongolia tract,” Tectonophysics 369, 155–174 (2003).

    Article  Google Scholar 

  33. E. L. Miller, P. B. Gans, and J. Garing, “The Snake range décollement: An exhumed mid-Tertiary brittle-ductile transition,” Tectonics 2, 239–263 (1983).

    Article  Google Scholar 

  34. M. Mizera and J. H. Behrmann, “Strain and flow in the metamorphic core complex of Ios Island (Cyclades, Greece),” Int. J. Earth Sci. 105, 2097‒2110 (2015).

    Article  Google Scholar 

  35. S. J. Naruk, “Displacement calculations across a metamorphic core complex mylonite zone: Pinaleño Mountains, southeastern Arizona,” Geology 15, 656–660 (1987).

    Article  Google Scholar 

  36. S. J. Naruk, “Strain and displacement across the Pinaleño Mountains shear zone, Arizona, USA,” J. Struct. Geol. 8, 35–46 (1986).

    Article  Google Scholar 

  37. C. W. Passchier and C. Simpson, “Porphyroclast systems as kinematic indicators,” J. Struct. Geol. 8, 831‒843 (1986).

    Article  Google Scholar 

  38. S. J. Reynolds, Geology of the South Mountains, Central Arizona, Vol. 195 of Ariz. Bur. Geol. Min. Technol. Bull. (1985).

  39. K. Sarkarinejad, A. Faghih, and B. Grasemann, “Transpressional deformations within the Sanandaj-Sirjan Metamorphic Belt (Zagros Mountains, Iran),” J. Struct. Geol. 30, 818‒826 (2008).

    Article  Google Scholar 

  40. K. Sarkarinejad, A. Partabian, and A. Faghih, “Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone,” J. Struct. Geol. 48, 126‒136 (2013).

    Article  Google Scholar 

  41. K. Sarkarinejad, S. Keshavarz, and A. Faghih, “Kinematics of the Sirjan mylonite nappe, Zagros Orogenic Belt: Insights from strain and vorticity analyses,” J. Geosci. 60, 189–202 (2015).

    Article  Google Scholar 

  42. M. Takin, “Iranian geology and continental drift in the Middle East,” Nature 235, 147‒150 (1972).

    Article  Google Scholar 

  43. C. Verdel, B. P. Wernicke, J. Ramezani, J. Hassanzadeh, P. R. Renne, and T. L. Spell, “Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of Central Iran,” Geol. Soc. Am. Bull. 119, 961‒977 (2007).

    Article  Google Scholar 

  44. F. H. T. Wagner and R. A. Johnson, “Along-strike upper-plate deformation in response to metamorphic core complex emplacement, SE Arizona,” Tectonophysics 488, 162‒173 (2010).

    Article  Google Scholar 

  45. J. Wakabayashi, “Tectonic mechanisms associated with PT paths of regional metamorphism: Alternatives to single-cycle thrusting and heating,” Tectonophysics 392, 193‒218 (2004).

    Article  Google Scholar 

  46. S. R. Wallis, “Vorticity analysis in a metachert from the Sambagawa belt, SW Japan,” J. Struct. Geol. 14, 271‒280 (1992).

    Article  Google Scholar 

  47. S. R. Wallis, “Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan,” J. Struct. Geol. 17, 1077‒1093 (1995).

    Article  Google Scholar 

  48. S. R. Wallis, J. P. Platt, and S. D. Knott, “Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian Arc and the Eastern Alps,” Am. J. Sci. 293, 463–494 (1993).

    Article  Google Scholar 

  49. M. L. Wells and R. W. Allmendinger, “An early history of pure shear in the upper plate of the raft River metamorphic core complex: Black Pine Mountains, southern Idaho,” J. Struct. Geol. 12, 851–867 (1990).

    Article  Google Scholar 

  50. S. A. Wilde, X. Zhou, A. A. Nemchin, and M. Sun, “Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia,” Geology 31, 817‒20 (2003).

    Article  Google Scholar 

  51. F. Y. Wu, J. H. Yang, S. A. Wilde, and X. O. Zhang, “Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China,” Chem. Geol. 221, 127‒56 (2005).

    Article  Google Scholar 

  52. F. Y. Wu, J. Q. Lin, S. A. Wilde, X. O. Zhang, and J. H. Yang, “Nature and significance of the Early Cretaceous giant igneous event in eastern China,” Earth Planet. Sci. Lett. 233, 103‒19 (2005).

    Article  Google Scholar 

  53. P. Xypolias and I. K. Koukouvelas, “Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmos Shear Zone, External Hellenides, Greece,” Tectonophysics 338, 59‒77 (2001).

    Article  Google Scholar 

  54. P. Xypolias and S. Kokkalas, “Heterogeneous ductile deformation along a mid-crustal extruding shear zone: An example from the External Hellenides (Greece),” in Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zone, Vol. 268 of Geol. Soc. London, Spec. Publ., Ed. by R. D. Law, M. P. Searle, and L. Godin (2006), pp. 497‒516.

  55. C. Yin, B. Zhang, B. F. Han, J. Zhang, Y. Wang, and S. Ai, “Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China craton, NE Asia,” J. Struct. Geol. 94, 195‒212 (2017).

    Article  Google Scholar 

  56. B. Zhang, J. Zhang, D. Zhong, and L. Guo, “Strain and kinematic vorticity analysis: An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China,” Sci. China. Ser. D: Earth Sci. 52, 602‒618 (2009).

    Article  Google Scholar 

  57. X. M. Zhou, T. Sun, W. Shen, L. Shu, and Y. Niu, “Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution,” Episodes 29, 26‒33 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank K.E. Degtyarev, Editor-in-Chief, and Marina N. Shoupletsova, Editorial Supervisor of the journal Geotectonics. We also acknowledge the critical comments by Dr. Andrey A. Shchipansky improved the scientific content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Faghih.

Ethics declarations

We would like to thank Research Council of Shiraz University (Iran) for financial support.

Additional information

Reviewer A.A. Shchipanskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghih, A., Soleimani, M. & Partabian, A. Exhumation Style of the Chapedony Core Complex (Central Iran): Insights from Kinematic Vorticity Analysis. Geotecton. 54, 705–712 (2020). https://doi.org/10.1134/S0016852120050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120050040

Keywords:

Navigation