Skip to main content
Log in

Molecular photonic logic gates

  • Molecular Photonics
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The possibility of performing logical operations at the molecular level is being actively investigated at present with the aim of developing molecular logic gates, which can be used in information technologies. In this minireview, the design algorithm of molecular logic gates is considered and the requirements on molecular systems for use as logic gates are specified. Examples of molecular logic gates performing different logical operations are given. Attention is focused on all-photonic molecular logic gates, in which light is used as an input signal for transferring the system from one state to another and for reading the output signal by absorption or luminescence. In addition, optoelectronic devices with light as the input signal and electric current as the output signal are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Silva, A.P. and Uchiyama, S., Nature Nanotechnology, 2007, vol. 2, p. 399.

    Article  Google Scholar 

  2. Credi, A., Balzani, V., Langford, S.J., and Stoddart, J.F., J. Am. Chem. Soc., 1997, vol. 119, p. 2679.

    Article  CAS  Google Scholar 

  3. de Silva, A.P. and McClenaghan, N.D., J. Am. Chem. Soc., 2000, vol. 122, p. 3965.

    Article  Google Scholar 

  4. Raymo, F.M., The Spectrum, 2004, vol. 17, p. 14.

    CAS  Google Scholar 

  5. Gust, D., Moore, T.A., and Moore, A.L., Chem. Commun., 2006, p. 1169.

  6. Qu, D.H., Ji, F.Y., Wang, Q.C., and Tian, H., Adv. Mater., 2006, vol. 18, p. 2035.

    Article  CAS  Google Scholar 

  7. Tian, H. and Wang, S., Chem. Commun., 2007, p. 781.

  8. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Li, V.M., Khim. Vys. Energ., 2008, vol. 42, no. 6, p. 497 [High Energy Chem., 2008, vol. 42, no. 6, p. 446].

    Google Scholar 

  9. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Li, V.M., Khim. Vys. Energ., 2008, vol. 42, no. 4, p. 95 [High Energy Chem., 2008, vol. 42, no. 7, p. 594].

  10. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Li, V.M., Izv. Ross. Akad. Nauk, Ser. Khim., 2008, vol. 12, p. 2535.

    Google Scholar 

  11. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee, V.M., J. Mater. Chem., 2009, vol. 19, p. 7721.

    Article  CAS  Google Scholar 

  12. Straight, S.D., Andreasson, J., Kodis, G., Bandyopadhyay, S., Mitchell, R.H., Moore, T.A., Moore, A.L., and Gust, D., J. Am. Chem. Soc., 2005, vol. 127, p. 9403.

    Article  CAS  Google Scholar 

  13. Andreasson, J., Straight, S.D., Bandyopadhyay, S., Mitchell, R.H., Moore, T.A., Moore, A.L., and Gust, D., Angew. Chem. Int. Ed., 2007, vol. 46, p. 958.

    Article  CAS  Google Scholar 

  14. Andreasson, J., Straight, S.D., Bandyopadhyay, S., Mitchell, R.H., Moore, T.A., Moore, A.L., and Gust, D., J. Phys. Chem. C., 2007, vol. 111, p. 14274.

    Article  CAS  Google Scholar 

  15. Andreasson, J., Kodis, G., Terazono, Y., Liddell, P.A., Bandyopadhyay, S., Mitchell, R.H., Moore, T.A., Moore, A.L., and Gust, D., J. Am. Chem. Soc., 2004, vol. 126, p. 15926.

    Article  CAS  Google Scholar 

  16. Straight, S.D., Liddell, p.A., Terazono, Y., Moore, T.A., Moore, A.L., and Gust, D., Adv. Funct. Mater., 2007, vol. 17, p. 777.

    Article  CAS  Google Scholar 

  17. Andreasson, J., Straight, S.D., Moore, T.A., Moore, A.L., and Gust, D., Chem. Eur. J., 2009, vol. 15, p. 3936.

    Article  CAS  Google Scholar 

  18. Andreasson, J., Straight, S.D., Moore, T.A., Moore, A.L., and Gust, D., J. Am. Chem. Soc., 2008, vol. 130, p. 11122.

    Article  CAS  Google Scholar 

  19. Andreasson, J., Straight, S.D., Kodis, G., Park, C.D., Hambourger, M., Gervaldo, M., Albinsson, B., Moore, T.A., Moore, A.L., and Gust, D., J. Am. Chem. Soc., 2006, vol. 128, p. 16259.

    Article  CAS  Google Scholar 

  20. Qu, D.H., Wang, Q.C., and Tian, H., Angew. Chem. Int. Ed., 2005, vol. 44, p. 5296.

    Article  CAS  Google Scholar 

  21. Andreasson, J., Terazono, Y., Albinsson, B., Moore, T.A., Moore, A.L., and Gust, D., Angew. Chem., Int. Ed., 2005, vol. 44, p. 7591.

    Article  CAS  Google Scholar 

  22. Molecular Nanoelectronics, Reed, M.A. and Lee, T., Eds., California: ASP, 2003.

    Google Scholar 

  23. Szacilowski, K., Macyk, W., and Stochel, G., J. Am. Chem. Soc., 2006, vol. 128, p. 4550.

    Article  CAS  Google Scholar 

  24. Furtado, L.F.O., Alexiou, A.D.P., Goncalves, L., Toma, H.E., and Araki, K., Angew. Chem. Int. Ed., 2006, vol. 45, p. 3143.

    Article  CAS  Google Scholar 

  25. Mitsuishi, M., Matsui, J., and Miyashita, T., J. Mater. Chem., 2009, vol. 19, p. 325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Budyka.

Additional information

Original Russian Text © M.F. Budyka, 2010, published in Khimiya Vysokikh Energii, 2010, Vol. 44, No. 2, pp. 154–160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budyka, M.F. Molecular photonic logic gates. High Energy Chem 44, 121–126 (2010). https://doi.org/10.1134/S0018143910020062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143910020062

Keywords

Navigation