Skip to main content
Log in

Application of the embedded atom model to liquid metals: Liquid sodium

  • Thermophysical Propeties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The procedure for the calculation of the embedded atom model (EAM) potential for liquid metal, which involves the use of diffraction data on the structure of material in the vicinity of the melting point, is applied to sodium. In fitting the parameters of EAM potential, use is made of the data on the structure of sodium at 378, 473, and 723 K, as well as on the thermodynamic properties of sodium at pressures up to 96 GPa. The use of the method of molecular dynamics (MD) and of the EAM potential produces good agreement with experiment as regards the structure, density, and potential energy of liquid metal along the p ≅ 0 isobar at temperatures up to 2300 K, as well as along the shock adiabat up to pressures of ∼100 GPa and temperature of ∼30 000 K. The melting temperature of bcc model of sodium with EAM potential is equal to 358 ± 1 K and close to real. The predicted value of bulk modulus at 378 K is close to the actual value. The self-diffusion coefficients under isobaric heating increase with temperature by the power law with exponent of 1.6546. The values of pressure, energy, heat capacity, and the temperature coefficient of pressure are calculated in a wide range of densities. The compression to 45–50% of normal volume causes a variation of the structure of liquid; this results in the emergence of atoms with a small radius of the first coordination sphere (∼2.1 Å) and low coordination number, which form connected groups (clusters). Their concentration increases with decreasing volume and increasing temperature. The pre-peak of pair correlation functions, the height of which increases with heating, corresponds to these atoms. In the region of variation of the structure, the pressure decrease under isochoric heating follows the pattern of water anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belashchenko, D.K. and Ostrovskii, O.I., Zh. Fiz. Khim., 2006, vol. 80, no. 4, p. 602 (Russ. J. Phys. Chem. (Engl. transl.), vol. 80, no. 4).

    Google Scholar 

  2. Belashchenko, D.K., Zh. Fiz. Khim., 2006, vol. 80, no. 5, p. 872 (Russ. J. Phys. Chem. (Engl. transl.), vol. 80, no. 5).

    Google Scholar 

  3. Belashchenko, D.K. and Ostrovskii, O.I., Teplofiz. Vys. Temp., 2009, vol. 47, no. 2, p. 231 (High Temp. (Engl. transl.), vol. 46, no. 2, p. 211).

    Google Scholar 

  4. Belashchenko, D.K., Zh. Fiz. Khim., 2006, vol. 80, no. 10, p. 1767 (Russ. J. Phys. Chem. (Engl. transl.), vol. 80, no. 10).

    Google Scholar 

  5. Belashchenko, D.K. and Nikitin, N.Yu., J. Phys. Conf. Ser., 2008, vol. 98, p. 042020.

    Article  Google Scholar 

  6. Mendelev, M.I. and Srolovitz, D.J., Phys. Rev. B, 2002, vol. 66, p. 014205.

    Article  ADS  Google Scholar 

  7. Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., and Asta, M., Phil. Mag. A, 2003, vol. 83, p. 3977.

    Article  Google Scholar 

  8. Schommers, W., Phys. Rev. A, 1983, vol. 28, p. 3599.

    Article  ADS  Google Scholar 

  9. Belashchenko, D.K., Komp’yuternoe modelirovanie zhidkikh i amorfnykh veshchestv: Nauchnoe izdanie (Computer Simulation of Liquid and Amorphous Substances: A Scientific Publication), Moscow: MISIS, (Moscow Inst. of Steel and Alloys), 2005.

    Google Scholar 

  10. Bystrov, P.I., Kagan, D.N., Krechetova, G.A., and Shpil’rain, E.E., Zhidkometallicheskie teplonositeli teplovykh trub i energeticheskikh ustanovok (Liquid-Metal Heat-Transfer Agents in Heat Pipes and Power Plants), Moscow: Nauka, 1988.

    Google Scholar 

  11. http://www.webelements.com

  12. Tatarinova, L.I., Struktura tverdykh amorfnykh i zhidkikh veshchestv (The Structure of Solid Amorphous and Liquid Substances), Moscow: Nauka, 1983.

    Google Scholar 

  13. Waseda, Y., The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids, New York: McGraw-Hill, 1980.

    Google Scholar 

  14. www.tagen.tohoku.ac.jp/general/building/iamp/data-base/scm/LIQ/gr.html

  15. Meyer, R.E. and Nachtrieb, N.H., J. Chem. Phys., 1955, vol. 23, p. 1851.

    Article  ADS  Google Scholar 

  16. Norman, G.E. and Stegailov, V.V., Mol. Simul., 2004, vol. 30, no. 6, p. 397.

    Article  MATH  Google Scholar 

  17. Kuksin, A.Y., Morozov, I.V., Norman, G.E., Stegailov, V.V., and Valuev, I.A., Mol. Simul., 2005, vol. 31, nos. 14–15, p. 1005.

    Article  Google Scholar 

  18. Belashchenko, D.K. and Ostrovskii, O.I., Zh. Fiz. Khim., 2008, vol. 82, no. 3, p. 443 (Russ. J. Phys. Chem. (Engl. transl.), vol. 82, no. 3).

    Google Scholar 

  19. LASL Shock Hugoniot Data, Marsh, S.P., Ed., Berkeley: Univ. California Press, 1979.

    Google Scholar 

  20. Bakanova, A.A., Dudoladov, I.P., and Trunin, R.F., Fiz. Tverd. Tela, 1965, vol. 7, p. 1615.

    Google Scholar 

  21. Young, D.A. and Ross, M., Phys. Rev. B, 1984, vol. 29, no. 2, p. 682.

    Article  ADS  Google Scholar 

  22. Falconi, S., Lundegaard, L.F., Hejny, C., and McMahon, M.I., Phys. Rev. Lett., 2005, PRL 94, p. 125507.

  23. Kennedy, G.C., Jayaraman, A., and Newton, R.C., Phys. Rev., 1962, vol. 126, no. 4, p. 1363.

    Article  ADS  Google Scholar 

  24. Jayaraman, A., Newton, R.C., and McDonough, J.M., Phys. Rev., 1967, vol. 159, no. 3, p. 527.

    Article  ADS  Google Scholar 

  25. Katayama, Y. and Tsuji, K., J. Phys. Condens. Matter, 2003, vol. 15, p. 6085.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Original Russian Text © D.K. Belashchenko, 2009, published in Teplofizika Vysokikh Temperatur, 2009, Vol. 47, No. 4, pp. 522–535.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belashchenko, D.K. Application of the embedded atom model to liquid metals: Liquid sodium. High Temp 47, 494–507 (2009). https://doi.org/10.1134/S0018151X09040063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X09040063

PACS numbers

Navigation