Skip to main content
Log in

Laws of vapor bubble growth in the superheated liquid volume (thermal growth scheme)

  • Review
  • Published:
High Temperature Aims and scope

Abstract

The mathematical formulation of the heat-input-controlled vapor bubble growth in an infinite volume of uniformly heated liquid is described. Using the dimensional theory, the structure of the solution was analyzed qualitatively. A historical survey of theoretical works devoted to the considered problem is presented. Asymptotic solutions are obtained and studied systematically. The results of the complete analytical solution of the problem and formulas for the calculation of the bubble growth rate in the whole domain of possible variations in regime parameters are presented. The conclusion is made that the influence of permeability of the interface has a significant effect on the bubble growth rate. It is shown that the Plesset-Zwick formula, which is commonly accepted in computational practice, is not applicable at both small and large Jakob numbers and its good agreement with the experiment is determined to a large extent by a combination of the imperfectness of the theoretical analysis and the experimental error. The conclusion is made that, for many liquids, the ultimately achievable value of the dimensionless superheating parameter (Stefan number) can exceed unity. In this case, the regularities in the bubble growth acquire some features unexplored to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plesset, M.S. and Prosperetti, A., Annu. Rev. Fluid Mech., 1977, vol. 9, p. 145.

    Article  ADS  Google Scholar 

  2. Brennen, C.E., Cavitation and Bubble Dynamics, Oxford: Oxford University Press, 1995, p. 254.

    Google Scholar 

  3. Avdeev, A.A. and Zudin, Yu.B., High Temp., 2002, vol. 40, no 2, p. 264.

    Article  Google Scholar 

  4. Bosnjakovic, F., Tech. Mech. Thermodyn., 1930, vol. 10, p. 267.

    Google Scholar 

  5. Jakob, M. and Linke, W., Phys. Z., 1935, vol. 36, p. 391.

    Google Scholar 

  6. Fritz, W. and Ende, W., Phys. Z., 1936, vol. 37, p. 391.

    Google Scholar 

  7. Plesset, M.S. and Zwick, S.A., J. Appl. Phys., 1952, vol. 23, no. 1, p. 95.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Plesset, M.S. and Zwick, S.A., J. Appl. Phys., 1954, vol. 25, no. 4, p. 493.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Zwick S.A. Hydrodyn. Lab. Rep., 1954, no. 21, p. 103.

    Google Scholar 

  10. Forster, H.K. and Zuber, N., J. Appl. Phys., 1954, vol. 25, no. 4, p. 474.

    Article  ADS  Google Scholar 

  11. Birkhoff, G. and Margulis, R., Phys. Fluids, 1958, vol. 1, p. 201.

    Article  MathSciNet  ADS  Google Scholar 

  12. Scriven, L.E., Chem. Eng. Sci., 1959, vol. 10, nos. 1–2, p. 1.

    Article  Google Scholar 

  13. Picker G. Dissertation, München: Technische Universität, 1998.

    Google Scholar 

  14. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Oxford University Press, 1959, p. 488.

    Google Scholar 

  15. Avdeev, A.A., Teplofiz. Vys. Temp., 1988, vol. 26, no. 2, p. 290.

    Google Scholar 

  16. Dergarabedian, P., J. Appl. Mech., 1953, vol. 20, no 4, p. 537.

    Google Scholar 

  17. Lee, H.S. and Merte, J.H., Int. J. Heat Mass Transfer, 1996, vol. 39, p. 2427.

    Article  MATH  Google Scholar 

  18. Dalle Donne, M. and Ferranti, M.P., Int. J. Heat Mass Transfer, 1975, vol. 18, p. 477.

    Article  Google Scholar 

  19. Theofanous, T.G. and Patel, P.D., Int. J. Heat Mass Transfer, 1976, vol. 19, p. 425.

    Article  Google Scholar 

  20. Robinson, A. and Judd R.L., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 5101.

    Article  MATH  Google Scholar 

  21. Lesage, F., Judd, R.L., and Robinson, A.J., Comput. Therm. Sci., 2010, vol. 2, no 1, p. 19.

    Article  Google Scholar 

  22. Labuntsov, D.A. and Yagov, V.V., Mekhanika dvukhfaznykh system (Mechanics of Two-Phase Systems), Moscow: Moscow Power Engineering Institute, 2000, p. 374.

    Google Scholar 

  23. Labuntsov, D.A., Kol’chugin, B.A, Golovin, V.S., Zakharova, E.A., and Vladimirova, L.N., Teplofiz. Vys. Temp., 1964, vol. 2, no 3, p. 446.

    Google Scholar 

  24. Picker, G. and Straub, J., Int. J. Thermodyn., 2005, vol. 8, no. 1, p. 15.

    Google Scholar 

  25. Theofanous, T.G., Bohrer, T.G., Chang, M.C., and Patel, P.D., J. Heat Transfer, 1978, vol. 100, p. 41.

    Article  Google Scholar 

  26. Frost, D.L. and Sturtevant, B., J. Heat Transfer, 1986, vol. 108, p. 418.

    Article  Google Scholar 

  27. Frost, D.L., Phys Fluids, 1988, vol. 31, p. 2554.

    Article  ADS  Google Scholar 

  28. Shepherd, J.E. and Sturtevant, B., J. Fluid Mech., 1982, vol. 121, p. 379.

    Article  ADS  Google Scholar 

  29. Avdeev, A.A. and Zudin, Y.B., Heat Mass Transfer, 2005, vol. 41, p. 855.

    Article  ADS  Google Scholar 

  30. Skripov, V.P., Metastable Liquids New York: Wiley, 1974.

    Google Scholar 

  31. Shepherd, J.E., McCahan, S., and Thompson, P.A., Adiabatic Waves in Liquid-Vapor Systems, Berlin: Springer-Verlag, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Avdeev.

Additional information

Original Russian Text © A.A. Avdeev, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 4, pp. 617–632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, A.A. Laws of vapor bubble growth in the superheated liquid volume (thermal growth scheme). High Temp 52, 588–602 (2014). https://doi.org/10.1134/S0018151X14040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14040026

Keywords

Navigation