Skip to main content
Log in

Simulation of the Thermal Decomposition of Methane at Constant Volume and Temperature Using Methods of Molecular Dynamics and Thermodynamics

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The thermal decomposition of methane at constant temperatures and densities ranging from 0.05 to 0.524 g/cm3 has been simulated using methods of molecular dynamics and equilibrium thermodynamics. The molecular-dynamics simulation of the initial stage of methane decomposition has been performed using the reaction force field ReaxFF-lg at temperatures of 2500–4000 K. The simulation results showed that the methane decomposition consists of the successive formation and decay of radicals and light hydrocarbons and their replacement with polyatomic hydrocarbons of increasing complexity, similar to polycyclic aromatic hydrocarbons, whose decomposition and aggregation leads to generation of condensed-carbon nucleation centers. In turn, the results of the thermodynamic calculations indicate that the methane decomposition begins and occurs at lower temperatures as compared with the results of ultrashort nonequilibrium calculations by the molecular dynamics method. Thus, the application of molecular dynamics and thermodynamics methods for the same process presents extreme versions of possible sequences of states in the cases of ultrashort nonequilibrium and long-term, similar to equilibrium, processes of methane thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Gautier, M., Rohani, V., and Fulcheri, L., Int. J. Hydrogen Energy, 2017, vol. 42, no. 47, p. 28140.

    Article  CAS  Google Scholar 

  2. Kevorkian, V., Heath, C.E., and Boudart, M., J. Phys. Chem., 1960, vol. 64, no. 8, p. 964.

    Article  CAS  Google Scholar 

  3. Kozlov, G.I. and Knorre, V.G., Combust. Flame, 1962, vol. 6, p. 253.

    Article  ADS  CAS  Google Scholar 

  4. Khan, M.S. and Crynes, B.L., Ind. Eng. Chem., 1970, vol. 62, no. 10, p. 54.

    Article  CAS  Google Scholar 

  5. Hartig, R., Troe, J., and Wagner, H.G., Symp. Combust., 1971, vol. 13, no. 1, p. 147.

    Article  Google Scholar 

  6. Chen, C.J. and Back, M.H., Can. J. Chem., 1975, vol. 53, p. 3580.

    Article  CAS  Google Scholar 

  7. Hidaka, Y., Nakamura, T., Tanaka, H., et al., Int. J. Chem. Kinet., 1990, vol. 22, p. 701.

    Article  CAS  Google Scholar 

  8. Holmen, A., Olsvik, O., and Rokstad, O.A., Fuel Process. Technol., 1995, vol. 42, nos. 2–3, p. 249.

    Article  CAS  Google Scholar 

  9. Kee, R.J., Rupley, F.M., Miller, J.A., et al., CHEMKIN Collection, Release 3.5, San Diego, CA: Reaction Design, Inc., 2000.

    Google Scholar 

  10. Abbas, H.F. and Daud, W.W., Int. J. Hydrogen Energy, 2010, vol. 35, no. 3, p. 1160.

    Article  CAS  Google Scholar 

  11. Pinilla, J.L., Suelves, I., Lazaro, M.J., and Moliner, R., Chem. Eng. J., 2008, vol. 138, p. 301.

    Article  CAS  Google Scholar 

  12. Gaudernack, B. and Lynum, S., Int. J. Hydrogen Energy, 1998, vol. 23, no. 12, p. 1087.

    Article  CAS  Google Scholar 

  13. Fulcheri, L., Int. J. Hydrogen Energy, 2017, vol. 42, no. 47, p. 28140.

    Article  Google Scholar 

  14. Bogana, M.P. and Colombo, L., Appl. Phys. A: Mater. Sci. Process., 2007, vol. 86, no. 3, p. 275.

    Article  ADS  CAS  Google Scholar 

  15. Yamaguchi, Y. and Maruyama, S., Chem. Phys. Lett., 1998, vol. 286, p. 336.

    Article  ADS  CAS  Google Scholar 

  16. Nyden, M.R., Stoliarov, S.I., Westmoreland, P.R., Guo, Z.X., and Jee, C., Mater. Sci. Eng., A, 2004, vol. 365, p. 114.

    Article  Google Scholar 

  17. Galiullina, G.M., Orekhov, N.D., and Stegailov, V.V., J. Phys.: Conf. Ser., 2016, vol. 774, p. 012033.

    Google Scholar 

  18. Ostroumova, G., Orekhov, N., and Stegailov, V., Diamond Relat. Mater., 2019, vol. 94, p. 14.

    Article  ADS  CAS  Google Scholar 

  19. Lummen, N., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 7873.

    Article  Google Scholar 

  20. Lummen, N., Comput. Mater. Sci., 2010, vol. 49, p. 243.

    Article  Google Scholar 

  21. Liu, L., Liu, Y., Zybin, S.V., Sun, H., and Goddard, W.A. III, J. Phys. Chem. A, 2011, vol. 115, p. 11016.

    Article  CAS  PubMed  Google Scholar 

  22. LAMMPS: A Flexible Simulation Tool for Particle-based Materials Modeling at the Atomic, Meso, and Continuum Scales. https://www.lammps.org/.

  23. Chenoweth, K., Van Duin, A.C.T., and Goddard, W.A.I., J. Phys. Chem. A, 2008, vol. 112, no. 5, p. 1040.

    Article  CAS  PubMed  Google Scholar 

  24. Mao, Q., Ren, Y., Luo, K.H., and van Duin, A., J. Chem. Phys., 2017, vol. 147, p. 244305.

    Article  ADS  PubMed  Google Scholar 

  25. Van Duin, A.C.T., Dasgupta, S., Lorant, F., and Goddard, W.A. III, J. Phys. Chem. A, 2001, vol. 105, p. 9396.

    Article  CAS  Google Scholar 

  26. Victorov, S.B., El-Rabii, H., Gubin, S.A., Maklashova, I.V., and Bogdanova, Yu.A., J. Energ. Mater., 2010, vol. 28, p. 35.

    Article  ADS  CAS  Google Scholar 

  27. Kang, H.S., Lee, C.S., Ree, T., and Ree, F.H., J. Chem. Phys., 1985, vol. 82, no. 1, p. 414.

    Article  ADS  CAS  Google Scholar 

  28. Bogdanova, Yu.A., Gubin, S.A., Viktorov, S.B., and Gubina, T.V., High Temp., 2015, vol. 53, no. 4, p. 481.

    Article  CAS  Google Scholar 

  29. Gubin, S.A. and Maklashova, I.V., Mater. V Mezhdun. konf. “Lazernye, plazmennye issledovaniya i tekhnologii 2019” (Proc. V Int. Conf. “Laser, Plasma Research and Technology 2019”), Moscow: Mosk. Inzh.-Fiz. Inst., 2019, p. 277.

  30. Gubin, S.A., Dzhelilova, E.I., and Maklashova, I.V., Gorenie Vzryv, 2014, vol. 7, p. 226.

    Google Scholar 

  31. Glosli, J.N. and Ree, F.H., Phys. Rev. Lett., 1999, vol. 82, no. 23, p. 4659.

    Article  ADS  CAS  Google Scholar 

  32. Odintsov, V.V., Gubin, S.A., Pepekin, V.I., and Akimova, L.N., Khim. Fiz., 1991, vol. 10, no. 5, p. 687.

    CAS  Google Scholar 

  33. Wentorf, R.H., Jr., J. Phys. Chem., 1965, vol. 69, p. 3063.

    Article  CAS  Google Scholar 

  34. Bohme, H., Jander, H., and Tanke, D., Symp. Combust., 1998, vol. 27, no. 1, p. 1605.

    Article  Google Scholar 

  35. Chanyshev, A.D., Litasov, K.D., Shatskiy, A., et al., Carbon, 2015, vol. 84, p. 225.

    Article  CAS  Google Scholar 

  36. Kim, K.S., Seo, J.H., Nam, J.S., Ju, W.T., and Hong, S.H., IEEE Trans. Plasma Sci., 2005, vol. 33, p. 813.

    Article  ADS  CAS  Google Scholar 

  37. Dean, A.J. and Hanson, R.K., Int. J. Chem. Kinet., 1992, vol. 24, p. 517.

    Article  CAS  Google Scholar 

  38. Daroux, M. and Billaud, F., Chem. Eng. Sci., 1997, vol. 52, p. 815.

    Article  Google Scholar 

  39. Michael, J.V., Lim, K.P., Kiefer, J.H., and Kumaran, S.S., J. Phys. Chem., 1993, vol. 97, p. 1914.

    Article  CAS  Google Scholar 

  40. Davydov, V.A., Rakhmanina, A.V., Agafonov, V., et al., Carbon, 2004, vol. 42, p. 261.

    Article  CAS  Google Scholar 

  41. Sabbah, H., Biennier, L., Klippenstein, S.J., Sims, I.R., and Rowe, B.R., J. Phys. Chem. Lett., 2010, vol. 1, no. 19, p. 2962.

    Article  CAS  Google Scholar 

  42. Gebbie, M.A., Ishewata, H., McQuade, P.J., et al., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 33, p. 8284.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mao, Q., Van Duin, A.C.T., and Luo, K.H., Carbon, 2017, vol. 121, p. 380.

    Article  CAS  Google Scholar 

  44. Lumen, A., Holmen, O.A., Rokstad, O.A., and Solbakken, A., Ind. Eng. Chem. Process Des. Dev., 1976, vol. 15, p. 439.

    Article  Google Scholar 

  45. Martinez, E., Perriot, R., and Kober, E.M., J. Chem. Phys., 2019, vol. 150, p. 244108.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Moore, D.S., J. Opt. Soc. Am. B, 2018, vol. 35, no. 10, p. B1.

    Article  CAS  Google Scholar 

  47. Cawkwell, M.J., Niklasson, M.N., and Dattelbaum, D.M., J. Chem. Phys., 2015, vol. 142, p. 064512.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Mahbubul, I. and Strachan, A., J. Phys. Chem. C, 2017, vol. 121, p. 22452.

    Article  Google Scholar 

  49. Brown, K.E., Mcgrane, S.D., Bolme, C.A., and Moore, D.S., J. Phys. Chem. A, 2014, vol. 118, p. 2559.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with the Joint Institute for High Temperatures of the Russian Academy of Sciences, no. 075-15-2020-785 on September 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Bogdanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudinov, A.V., Gubin, S.A. & Bogdanova, Y.A. Simulation of the Thermal Decomposition of Methane at Constant Volume and Temperature Using Methods of Molecular Dynamics and Thermodynamics. High Temp 61, 508–516 (2023). https://doi.org/10.1134/S0018151X23040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23040077

Navigation