Skip to main content
Log in

Calcium phosphate bone cements

  • Published:
Inorganic Materials Aims and scope

Abstract

The principles of developing calcium phosphate cements (CPCs) for replacement and regeneration of bone tissue are considered. The basic classification of CPCs is given according to the phase composition of the reaction products in the setting systems. Processes of phase composition and development of microstructure and properties are discussed. Injectable CPC compositions are considered, and the factors affecting the injectability, as well as the ways to modify the cement pastes to improve their properties, are discussed. The results of research and development in the field of composite CPCs, including those reinforced by disperse phases, are described. In the final part of the review, some data on commercial CPCs and their biological behavior are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hench, L.L. and Polak, J.M., Third-Generation Biomedical Materials, Science, 2002, vol. 295, pp. 1014–1017.

    Article  CAS  Google Scholar 

  2. Barinov, S.M., Ceramic and Composite Materials Based on Calcium Phosphate for Medicine, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–30.

    Google Scholar 

  3. Barinov, S.M. and Komlev, V.S., Calcium phosphate based bioceramics for bone tissue engineering, Zuerich: Trans. Tech., 2008.

    Google Scholar 

  4. Komath, M. and Varma, H.K., Development of a Fully Injectable Calcium Phosphate Cement for Orthopedic and Dental Applications, Bull. Mater. Sci., 2003, vol. 26, no. 3, pp. 415–422.

    Article  CAS  Google Scholar 

  5. LeGeros, R.Z., Chahayeb, A., and Shulman, A., Apatite Calcium Phosphates: Possible Dental Restauration Materials, J. Dent. Res., 1982, vol. 61, pp. 343–347.

    Google Scholar 

  6. Brown, W.E. and Chow, L.C., A New Calcium Phosphate, Water Setting Cement, Cements Research Progress, Brown, W.E., Ed., Ohio: American Ceramics Society, 1987, pp. 352–379.

    Google Scholar 

  7. Chow, L.C. and Takagi, S., A Natural Bone Cement — A Laboratory Novelty Led To the Development of Revolutionary New Biomaterials, J. Res. Natl. Inst. Stand. Technol., 2001, vol. 106, pp. 1029–1033.

    CAS  Google Scholar 

  8. Albee, F. and Morrison, H., Studies in Bone Growth: Triple Calcium Phosphate as a Stimulus to Osteogenesis, Ann. Surg., 1920, vol. 71, pp. 32–38.

    Article  CAS  Google Scholar 

  9. Brown, W.E., Environmental Phosphorus Handbook, New York: Willey and Sons, 1973, ch. 10, pp. 203–239.

    Google Scholar 

  10. Chow, L.C., Next Generation Calcium Phosphate-Based Biomaterials, J. Dent. Mater., 2009, vol. 28, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  11. Bohner, M., Design of Ceramic-Based Cements and Putties for Bone Graft Substitutions, Eur. Cells and Mater., 2010, vol. 20, pp. 1–12.

    CAS  Google Scholar 

  12. Dorozhkin, S.V., Calcium Orthophosphate Cements and Concretes, Materials, 2009, vol. 2, pp. 221–291.

    Article  CAS  Google Scholar 

  13. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Biokeramics Based on Calcium Phosphates), Moscow: Nauka, 2005.

    Google Scholar 

  14. Bohner, M., Reactivity of Calcium Phosphate Cements, J. Mater. Chem., 2007, vol. 17, pp. 3980–3986.

    Article  CAS  Google Scholar 

  15. Am. Natl. Stand. Inst., Am. Dent. Assoc., Specification no. 6: Zinc Polycarboxylate Cement, J. Am. Dent. Assoc. 1980, vol. 101, pp. 669–671

  16. Kopeikin, V.A., Petrova, A.P, and Rashkovan, I.L., Materialy na osnove metallofosfatov (Materials Based on Metallic Phosphates), Moscow: Khimiya, 1976.

    Google Scholar 

  17. Bigi, A., Panzavolta, S., and Rubini, K., Setting Mechanism of a Biomimetic Bone Cement, Chem. Mater., 2004, vol. 16, no. 19, pp. 3740–3745.

    Article  CAS  Google Scholar 

  18. Rau, J.V., Fosca, Ì., Komlev, V.S., Fadeeva, I.V., Albertini, V.R., and Barinov, S.M., In Situ Time-Resolved Studies of Octacalcium Phosphate and Dicalcium Phosphate Dihydrate in Simulated Body Fluid: Co-Operative Interactions and Nanoapatite Crystal Growth, Cryst. Growth and Design, 2010, vol. 10, pp. 3824–3834.

    Article  CAS  Google Scholar 

  19. Martin, R.I., TenHuissen, K.S., Leamy, P., and Brown, P.W., Enthalpies of Formation of Compounds in the P2O5-CaO-H2O System, J. Phys. Chem. B, 1997, vol. 101, pp. 9375–10379.

    Article  CAS  Google Scholar 

  20. Lemaitre, J., Mirtchi, A.A., and Mortier, A., Calcium Phosphate Cements for Medical Use: State of the Art and Perspectives of Development, Silic. Ind, 1987, vol. 9–10.

  21. Bohner, M., Lemaitre, J., and Ring, T.A., Effects of Sulfate, Pyrophosphate and Citrate Ions on the Physiochemical Properties of Cements Made of β-Tricalcium Phosphate — Phosphoric Acid — Water Mixtures, J. Am. Ceram. Soc., 1996, vol. 79, pp. 1427–1434.

    Article  CAS  Google Scholar 

  22. Smirnov, V.V., Rau, J.V., Generosi, A., Rossi Albertini, V., Ferro, D., and Barinov, S.M., Elucidation of Real-Time Hardening Mechanism of Two Novel High-Strength Calcium Phosphate Bone Cements, J. Biomed. Mater. Res. B, 2009, vol. 93B, pp. 74–83.

    Google Scholar 

  23. Generosi, A., Smirnov, V.V., Rau, J.V., Rossi Albertini, V., Ferro, D., and Barinov S.M. Phasec Development in the Hardening Process of Two Calcium Phosphate Bone Cements: An Energy Dispersive X-Ray Diffraction Study, Mater. Res. Bull., 2008, vol. 43, pp. 561–571.

    Article  CAS  Google Scholar 

  24. Smirnov, V.V., Barinov, S.M., Ievlev, V.M., Ferro, D., and Fedotov, A.Yu., Calcium Phosphate Bone Cement, Perspektivnye Materialy, 2008, no. 1, pp. 26–30.

  25. Fadeeva, I.V., Barinov, S.M., Komlev, V.S., Fedotov, D.A., Durisin, J., and Medvecky, L., Apatite Formation in the Reaction-Setting Mixture of Ca(OH)2-KH2PO4 System, J. Biomed. Mater. Res, 2004, vol. 70A, no. 2, pp. 303–308.

    Article  CAS  Google Scholar 

  26. Rodriguez-Lorenzo, L.M. and Vallet-Regi, M., Controlled Crystallization of Calcium Phosphate Apatites, Chem. Mater., 2000, vol. 12, pp. 2460–2465.

    Article  CAS  Google Scholar 

  27. Fernandez, E., Planell, J.A., and Best, S.M., Precipitation of Carbonated Apatite in the Cement System Ca3(PO4)2-Ca(H2PO4)2-CaCO3, J. Biomed. Mater. Res, 1999, vol. 47, pp. 466–471.

    Article  CAS  Google Scholar 

  28. Miyatomo, Y., Toh, T., Ishikawa, K., and Yuasa, T., Effect of Added NaHCO3 on the Basic Properties of Apatite Cement, J. Biomed. Mater. Res, 2001, vol. 54, pp. 311–319.

    Article  Google Scholar 

  29. Bohner, M., Malsy, A.K., Camire, C.L., and Gbureck, U., Combining Particle Size Distribution and Isothermal Calorimetry Data to Determine the Reaction Kinetics of α-Tricalcium Phosphate — Water Mixtures, Acta Biomater., 2006, vol. 2, pp. 343–348.

    Article  Google Scholar 

  30. Fernandez, E., Ginebra, M.P., Boltong, M.G., Driessens, F.C.M., Ginebra, J., de Maeyer, E.A.P., Verbeeck, R.M.H., and Planell, J.A., Kinetic Study of the Setting Reaction of a Calcium Phosphate Bone Cement, J. Biomed. Mater. Res, 1996, vol. 32 P, pp. 367–374.

    Article  Google Scholar 

  31. Liu, Ch., Shen, W., Gu, Y., and Hu, L., Mechanism of the Hardening Process for a Hydroxyapatite Cement, J. Biomed. Mater. Res, 1997, vol. 35, pp. 75–80.

    Article  CAS  Google Scholar 

  32. Kenny, S.M. and Burggy, M., Bone Cements and Fillers: a Review, J. Mater. Sci. Mater. Med., 2003, vol. 14, pp. 923–938.

    Article  CAS  Google Scholar 

  33. TenHuisen, K.S., and Brown, P.W., Variations in Solution Chemistry during Calcium Deficient and Stoichiometric Hydroxyapatite Formation from CaHPO4 · 2H2O and Ca4(PO4)2O, J. Biomed. Mater. Res., 1997, vol. 36, pp. 233–241.

    Article  CAS  Google Scholar 

  34. LeGeros, R.Z., Calcium Phosphate-Based Osteoinductive Materials, Chem. Rev., 2008, vol. 108, pp. 4742–4753.

    Article  Google Scholar 

  35. Gurin, A.N., Komlev, V.S., Fadeeva, I.V., and Barinov, S.M., Oktacalcium Phosphate as a Precursor of Biological Mineralization, an Advanced Osteoplastic Material, Stomatologiya, 2010, no. 4, p.57.

  36. Barinov, S.M. and Komlev, V.S., Osteoinductive Ceramic Materials for Repairing Bone Tissue: Octacalcium Phosphate, Materialovedenie, 2009, no. 10, pp. 34–41.

  37. Kamakura, S., Sasano, Y., Homma, H., Suzuki, O., Kagayama, M., and Motegi, K., Implantation of Octacalcium Phosphate (OCP) in Rat Skull Defects Enhances Bone Repair, J. Dent. Res., 1999, vol. 78, pp. 1682–1687.

    Article  CAS  Google Scholar 

  38. Dekker, R.J., de Bruijn, J.D., Stigter, M., Barrere, F., Layrolle, P., and van Blitterswijk, C.A., Bone Tissue Engineering on Amorphous Carbonated Apatite and Crystalline Octacalcium Phosphate Coated Titanium Discs, Biomaterials, 2005, vol. 26, pp. 5231–5239.

    Article  CAS  Google Scholar 

  39. Bermudez, O., Boltong, M.G., Driessens, F.C.M., and Planell J.A., Development of an Octacalcium Phosphate Cement, J. Mater. Sci. Mater. Med., 1994, vol. 5, pp. 144–150.

    Article  CAS  Google Scholar 

  40. Komlev, V.S., Fadeeva, I.V., Gurin, A.N., Shvorneva, L.I., Bakunova, N.V., and Barinov, S.M., New Calcium Phosphate Cements based on Tricalcium Phosphates, Dokl. Chem, 2011, vol. 437, no. 1, pp. 75–78.

    Article  CAS  Google Scholar 

  41. Komlev, V.S., Fadeeva, I.V., Barinov, S.M., Rau, J.V., Fosca, M., Gurin, A.N., and Gurin, N.A., J. Biomater. Appl., (in press).

  42. Komlev, V.S., Fadeeva, I.V., Fomin, A.S., Shvorneva, L.I., Barinov, S.M., and Ferro, D., Synthesis of Octacalcium Phosphate by Precipitation from Solution, Dokl. Chem., 2010, vol. 432, no. 2, pp. 178–182.

    Article  CAS  Google Scholar 

  43. Sena, M., Yamashita, Y., Nakano, Y., Ohgaki, M., Nakamura, S., Yamashita, K., and Takagi, Y., Octacalcium Phosphate-Based Cement as a Pulp-Capping Agent in Rats, Oral. Serg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2004, vol. 97, pp. 749–755.

    Article  Google Scholar 

  44. Generosi, A., Rau, J.V., Komlev, V.S., Albertini, V.R., Fedotov, A.Yu., and Barinov, S.M., Anomalous Hardening Behavior of a Calcium Phosphate Bone Cement, J. Phys. Chem. B, 2010, vol. 114, pp. 973–979.

    Article  CAS  Google Scholar 

  45. Rau, J.V., Generosi, A., Komlev, V.S., Fosca, M., Barinov, S.M., and Albertini, V.R., Real-Time Monitoring of the Mechanism of Poorly Crystalline Apatite Cement Conversion in the Presence of Chitosan, Simulated Body Fluid and Human Blood, Dalton Transactions, 2010, vol. 39, pp. 11412–11423.

    Article  CAS  Google Scholar 

  46. Lewis, G., Injectable Bone Cements for Use in Vertebroplasty and Kyphoplasty: State-of Art Review, J. Biomed. Mater. Res. B, 2006, vol. 76B, pp. 456–468.

    Article  CAS  Google Scholar 

  47. Bigi, A., Bracci, B., and Panzavolta, S., Effect of Added Gelatin on the Properties of Calcium Phosphate Cement, Biomaterials, 2004, vol. 25, pp. 2893–2899.

    Article  CAS  Google Scholar 

  48. Carey, L.E., Xu, H.H.K., Simon, Jr.C.G., Takagi, S., and Chow, L.C., Premixed Rapid-Setting Calcium Phosphate Composites for Bone Repair, Biomaterials, 2005, vol. 26, pp. 5002–5014.

    Article  CAS  Google Scholar 

  49. Skryabin, K.G., Vikhoreva, G.A., and Varlamov, V.P., Khitin i khitozan: Poluchenie, svoistva i primenenie (Chitin and Chitosan: Formation, Properties and Application), Moscow: Nauka, 2002.

    Google Scholar 

  50. Rau, J.V., Generosi, A., Smirnov, V.V., Ferro, D., Rossi Albertini, V., and Barinov, S.M., Energy Dispersive X-Ray Diffraction Study of Phase Development During Hardening of Calcium Phosphate Bone Cements with Addition of Chitosan, Acta Biomater., 2008, vol. 4, pp. 1089–1094.

    Article  CAS  Google Scholar 

  51. Bohner, M., Calcium Orthophosphates in Medicine, from Ceramics to Calcium Phosphate Cements, Injury, 2000, vol. 3.

  52. Takagi, S. and Chow, L., Formation of Macropores in Calcium-Phosphate Cement Implants, J. Dent. Res. SI., 1995, vol. 74, p.559.

    Google Scholar 

  53. Barralet, J.E., Grover, L., Gaunt, T., Wright, A.J., and Gibson, I.R., Preparation of Macroporous Calcium Phosphate Cement Tissue Engineering Scaffolds, Biomaterials, 2002, vol. 23, pp. 3063–3072.

    Article  CAS  Google Scholar 

  54. Tas, A.C., Preparation of Porous Apatite Granules from Calcium Phosphate Cement, J. Mater. Sci. Mater. Med., 2008, vol. 19, pp. 2231–2239.

    Article  CAS  Google Scholar 

  55. Habraken, W.J.E.M., de Jonge, L.T., Wolke, J.G.C., Yubao, L., Mikos, A.G., and Jansen, J.A., Introduction of Gelatin Microspheres Into An Injectable Calcium Phosphate Cement, J. Biomed. Mater. Res. A, 2008, vol. 87, pp. 643–655.

    CAS  Google Scholar 

  56. Markovic, M., Takagi, S., and Chow, L.C., Formation of Macropores in Calcium Phosphate Cements through the Use of Mannitol Crystals, Key Eng. Mater., 2001, vols. 192–195, pp. 773–776.

    Article  Google Scholar 

  57. Takagi, S. and Chow, L.C., Formation of Macropores in Calcium Phosphate Cement Implants, J. Mater. Sci. Mater. Med., 2001, vol. 12, pp. 135–139.

    Article  CAS  Google Scholar 

  58. Smirnov, V.V., Porous Cements to Fill Defects in Bone Tissue, Materialovedenie, 2009, no. 8, pp. 16–19.

  59. Khairoun, I., Boltong, M.G., Driessens, F.C.M., and Planell, J.A., Some Factors Controlling the Injectability of Calcium Phosphate Bone Cements, J. Mater. Sci. Mater. Med., 1998, vol. 9, pp. 425–428.

    Article  CAS  Google Scholar 

  60. Bohner, M. and Baroud, G., Injectability of Calcium Phosphate Pastes, Biomaterials, 2005, vol. 26, pp. 1553–1563.

    Article  CAS  Google Scholar 

  61. Leroux, L., Hatim, Z., Freche, M., and Lacout, J.L., Effects of Various Adjuvants (Lactic Acid, Glycerol and Chitosan) on the Injectability of a Calcium Phosphate Cement, Bone, 1999, vol. 25, no. 2, pp. 31–34.

    Article  Google Scholar 

  62. Gbureck, U., Barralet, J.E., Spatz, K., and Grover, L.M., Ionic Modification of Calcium Phosphate Cement Viscosity. Part I: Hypodermic Injection and Strength Improvement of Apatite Cement, Biomaterials, 2004, vol. 25, pp. 2187–2195.

    Article  CAS  Google Scholar 

  63. Gbureck, U., Dembski, S., Thull, R., and Barralet, J.E., Factors Influencing Calcium Phosphate Cement Shelf-Life, Biomaterials, 2005, vol. 26, pp. 3691–3697.

    Article  CAS  Google Scholar 

  64. Xu, H.H.R., Carey, L.E., Simon, Jr. C.G., Takagi, S., and Chow, L.C., Premixed Calcium Phosphate Cements: Synthesis, Physical Properties, and Cell Cytotoxicity, Dental Mater., 2007, vol. 23, no. 4, pp. 433–441.

    Article  CAS  Google Scholar 

  65. Smirnov, V.V., Egorov, A.A., Barinov, S.M., and Shvorneva, L.I., Composite Calcium Phosphate Bone Cements Reinforced by Particulate Titanium, Dokl. Chem., 2007, vol. 413, no. 2, pp. 82–85.

    Article  CAS  Google Scholar 

  66. Barinov, S.M. and Shevchenko, V.Ya., Prochnost’ tekhnicheskoi keramiki (Strength of Engineering Ceramics), Moscow: Nauka, 1996.

    Google Scholar 

  67. Neira, I.S., Kolen’ko, Yu.V., Kommareddy, K.P., Manjubala, I., Yoshimura, M., and Guitian, F., Reinforcing of a Calcium Phosphate Cement with Hydroxyapatite Crystals of Various Morphologies, ASM Appl. Mater. Interfaces, 2010, vol. 2, no. 11, pp. 3276–3284.

    Article  CAS  Google Scholar 

  68. Xu, H.H.K. and Quinn, J.B., Calcium Phosphate Cement Containing Resorbable Fibers for Short-Term Reinforcement and Macroporosity, Biomaterials, 2002, vol. 23, pp. 193–202.

    Article  Google Scholar 

  69. Egorov, A.A., Smirnov, V.V, and Barinov, S.M., Effect of Titanium Particle Sizes on Mechanical Properties of Bone Calcium Phosphate Cements, Materialovedenie, 2011, no. 1, pp. 11–14.

  70. Egorov, A.A., Reinforcing of Calcium Phosphate Cements for Medical Use, Perspektivnye Materialy, 2008, no. 5, pp. 297–300.

  71. Duracan, C. and Brown, P.W., Calcium-Deficient Hydroxyapatite-PGLA Composites: Mechanical and Microstructural Investigation, J. Biomed. Mater. Res., 2000, vol. 51, no. 4, pp. 726–734.

    Article  Google Scholar 

  72. Majekodunmi, A.O., Deb, S., and Nicholson, J.W., Effect of Molecular Weight and Concentration of Poly (Acrylic Acid) on the Formatiom of a Polymeric Calcium Phosphate Cement, J. Mater. Sci. Mater. Med., 2003, vol. 14, pp. 747–752.

    Article  CAS  Google Scholar 

  73. Xu, H.H.R., Takagi, S., Sun, L., Hussain, L., Chow, L.C., Guthrie, W.F., and Yen, J.H., Development of Nonrigid, Durable Calcium Phosphate Cement for Use in Periodontal Bone Repair, J. Am. Dent. Assoc., 2006, vol. 137, pp. 1131–1138.

    CAS  Google Scholar 

  74. Miyazaki, K., Horibe, T., Antonucci, J.M., Takagi, S., and Chow, L.C., Polymeric Calcium Phosphate Cements: Analysis of Reaction Products and Properties, Dental Mater., 1993, vol. 9, no. 1, pp. 46–50.

    Article  CAS  Google Scholar 

  75. Khashaba, R.M., Moussa, M.M., Mettenburg, D.J., Rueggeberg, F.A., Chutkan, N.B., and Borke, J.L., Polymeric-Calcium Phosphate Cement Composites — Material Properties: in Vitro and in Vivo Investigation, Int. J. Biomater., 2010. doi 10.1155/2010/691452

  76. Ikenaga, M., Hardouin, P., Lemaitre, J., Andrianjavoto, H., et al., Biomechanical Characterization of a Biodegradable Calcium Phosphate Hydraulic Cement: A Comparison with Porous Biphasic Calcium Phosphate Ceramics, J. Biomed. Mater. Res., 1998, vol. 40, pp. 139–144.

    Article  CAS  Google Scholar 

  77. Ooms, E.M., Wolke, J.G.C., Ven Der Waerden, J.P.C.M., and Jansen, J.A., Trabecular Bone Response to Injectable Calcium Phosphate (Ca-P) Cement, J. Biomed. Mater. Res., 2002, vol. 61, pp. 9–18.

    Article  CAS  Google Scholar 

  78. Yuan, H., Li, Y., de Bruijn, J.D., de Groot, K., et al., Tissue Responses of Calcium Phosphate Cement: a Study in Dogs, Biomaterials, 2000, vol. 21, pp. 1283–1290.

    Article  CAS  Google Scholar 

  79. Hidaka, N., Yamano, Y., Kadoya, Y., and Nishimura, N., Calcium Phosphate Bone Cement for Treatment of Distal Radius Fractures: a Preliminary Report, J. Orthop. Sci., 2002, vol. 7, pp. 182–187.

    Article  Google Scholar 

  80. Chaung, H.M., Hong, C.H., Chiang, C.P., et al., Comparison of Calcium Phosphate Cement Mixture and Pure Calcium Hydroxide as Direct Pulp-Capping Agents, J. Formos. Med. Assoc., 1996, vol. 95, pp. 545–550.

    CAS  Google Scholar 

  81. Gehrke, S.A., Junior, B.K., and Martins, N.M.B., Use of Bone Regeneration Cement for Bone Grafting in Atrophic Areasnclinical, Radiographic and Histological Analysis, Implants: Int. J. Oral Implantology, 2009, vol. 10, pp. 24–30.

    Google Scholar 

  82. Friedman, C.D., Costantino, P.D., Takagi, S., et al., Bone Source Hydroxyapatite Cement: a Novel Biomaterial for Craniofacial Skeletal Tissue Engineering and Reconstruction, J. Biomed. Mater. Res., 1998, vol. 43, pp. 428–432.

    Article  CAS  Google Scholar 

  83. Baker, S., Weinzweig, J., Kirschner, R., et al., Applications of a New Carbonated Calcium Phosphate Bone Cement: Early Experience in Pediatric and Adult Craniofacial Reconstruction, Plast. Reconstr. Surg., 2002, vol. 109, pp. 1789–1796.

    Article  Google Scholar 

  84. Stanton, D.C., Chou, J.C., and Carrasco, L.R., Injectable Calcium-Phosphate Bone Cement (Norian) for Reconstruction of a Large Mandibular Defect: a Case Report, J. Oral Maxillofac. Surg., 2004, vol. 62, pp. 235–240.

    Article  Google Scholar 

  85. Lye, K., Tideman, H., Merkx, M., and Jansen, J., Bone Cements and Their Potential Use in a Mandibular Endoprosthesis, Tissue Eng., 2009, vol. 15, pp. 485–496.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barinov, S.M., Komlev, V.S. Calcium phosphate bone cements. Inorg Mater 47, 1470–1485 (2011). https://doi.org/10.1134/S0020168511130024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511130024

Keywords

Navigation