Skip to main content
Log in

Magnetic and electrical properties of multiferroic BiFeO3, its synthesis and applications

  • Published:
Inorganic Materials Aims and scope

Abstract

Major ways to improve the magnetic and electrical properties of promising multiferroic BiFeO3 and optimize its synthesis have been studied, and its applications in spintronics, photonics, and magnonics have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catalan, G. and Scott, J.S., Physics and Applications of Bismuth Ferrite, Adv. Mater., 2009, vol. 21, no. 24, pp. 2463–2485.

    Article  CAS  Google Scholar 

  2. Royen, P. and Swars, K., Das System Wismutoxyd-Eisenoxyd im Bereich von O bis 55 mol. % Eisenoxyd, Angew. Chem., 1957, vol. 69, no. 24, p. 779.

    Article  CAS  Google Scholar 

  3. Venevtsev, Yu.N., Gagulin, V.V., Lyubimov, V.N., Segnetomagnetiki (Segnetomagnetics), Moscow: Nauka, 1982.

    Google Scholar 

  4. Smolenskii, G.A. and Chupis, I.E., Segnetomagnetics, Usp. Fiz. Nauk, 1982, vol. 137, pp. 415–435.

    Article  CAS  Google Scholar 

  5. Segnetomagnitnye veshchestva (Segnetomagnetic compounds), Venevtsev, Yu.N. and Lyubimov, V.N., Eds., Ìoscow: Nauka, 1990.

    Google Scholar 

  6. Speranskaya, E.I., Skorikov, V.M., Rode, E.Ya, and Terekhova, V.A., Phase Diagram of the System Bismuth Oxide-Iron Oxide, Izv. Akad. Nauk SSSR, Ser. Khim., 1965, vol. 5, pp. 905–906.

    Google Scholar 

  7. Tomashpolskii, Yu.Ya., Skorikov, V.M., Venevtsev, Yu.N., and Speranskaya, E.I., Growing and Some Structural Studies of Single Crystal Segnetoelectric BiFeO3, Neorg. Mater., 1966, vol. 2, no. 4, pp. 707–711.

    CAS  Google Scholar 

  8. Speranskaya, E.I. and Skorikov, V.M., Bismuth Titanates and Ferrites, Neorg. Mater., 1967, vol. 3, no. 2, pp. 341–344.

    CAS  Google Scholar 

  9. Speranskaya, E.I. and Skorikov, V.M., Sillenite Phase, Neorg. Mater., 1967, vol. 3, no. 2, pp. 345–350.

    CAS  Google Scholar 

  10. Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Zh. Obshch. Khim., 2003, vol. 73, no. 11, pp. 1772–1776.

    Google Scholar 

  11. Sosnowska, I., Peterlin-Neumaier, T., and Streichele, E., Spiral Magnetic Ordering in Bismuth Ferrite, J. Phys. C., 1982, vol. 15, pp. 4835–4846.

    Article  CAS  Google Scholar 

  12. Zvezdin, A.K. and Pyatakov, A.P., Phase Transitions and Giant Magnetoelectric Effect in Multiferroics), Usp. Fiz. Nauk., 2004, vol. 174, no. 4, pp. 465–470.

    Article  Google Scholar 

  13. Wang, J., Neaton, J.B., Zheng, H., et al., Epitaxial BiFeO3 Multiferroic Thin Films Heterostructures, Science, 2003. vol. 299, pp. 1719–1722.

    Article  CAS  Google Scholar 

  14. Kàlinkin, A.N. and Skorikov, V.M., Films and Single Crystals of BiFeO3 Are Promising Inorganic Materials for Spintronics, Zh. Neorg. Khim., 2010, vol. 55, pp. 1903–1919.

    Google Scholar 

  15. Selbach, S.M., Tybell, T., Einarsrud, M.-A., et al., High-Temperature Semiconducting Cubic Phase of BiFe0.7Mn0.3O3 + δ, Phys. Rev. B., 2009, vol. 79, p. 214113.

    Article  CAS  Google Scholar 

  16. Wang, H., Huang, H., and Wang, B., Effect of Mn Substitution for Fe in Multiferroic BiFeO3: A First-Principles Study, Sci. Adv. Mater., 2010, vol. 2, no. 2, pp. 184–189.

    Article  CAS  Google Scholar 

  17. Sahu, J.R. and Rao, C.N.R., Beneficial Modification of the Properties of Multiferroic BiFeO3 by Cation Substitution, Solid. State Sci., 2007, vol. 9, no. 10, pp. 950–954.

    Article  CAS  Google Scholar 

  18. Naganuma, H., Miura, J., and Okamura, S., Ferroelectric, Electrical and Magnetic Properties of Cr, Mn, Co, Ni, Cu Added Polycrystalline BiFeO3 Films, Appl. Phys. Lett., 2008, vol. 93, p. 052901.

    Article  CAS  Google Scholar 

  19. Singh, S.K. and Ishiwara, H., Microstructure and Frequency Dependent Electrical Properties of Mn-Substututed BiFeO3 Thin Films, J. Appl. Phys., 2007, vol. 102, p. 094109.

    Article  CAS  Google Scholar 

  20. Singh, S.K., Ishiwara, H., and Maruyama, K., Room Temperature Ferroelectric Properties of Mn-Substituted BiFeO3 Films Deposited on Pt Electrodes Using Chemical Solution Deposition, Appl. Phys. Lett., 2006, vol. 88, p. 262908.

    Article  CAS  Google Scholar 

  21. Baettig, P., Ederer, C., and Spaldin, N.A., First-Principles Study of the Multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: Structure, Polarization, and Magnetic Ordering Temperature, Phys. Rev. B., 2005, vol. 72, p. 214105.

    Article  CAS  Google Scholar 

  22. Baettig, P. and Spaldin N.A. Ab initio Prediction of a Multiferroic with Large Polarization and Magnetization, Appl. Phys. Lett., 2006, vol. 86, p. 162904.

    Google Scholar 

  23. Nechache, R., Harnagea C., Gunawan, L., et al. Growth, Structure and Properties of BiFeO3-BiCrO3 Films Obtained by Dual Cross Beam PLD, IEEE Trans., 2007, vol. 54, no. 12, pp. 2645–2652.

    Google Scholar 

  24. Naganuma, H., Miura, J., and Okamura, S., Ferroelectric, Electrical and Magnetic Properties of Cr, Mn, Co, Ni, Cu Added Polycrystalline BiFeO3 Films, Appl. Phys. Lett., 2008, vol. 93, p. 052901.

    Article  CAS  Google Scholar 

  25. McLeod, J.A., Pchelkina, Z.V., Finkelstein, L.D., et al., Electronic Structure of BiMeO3 (Me = Sc, Cr, Mn, Fe, Co, Ni) Multiferroics and Related Oxides, ArXiv:0910.0290v1, 2009.

  26. Pokatilov, S. and Pokatilov, V.V., Local State of Iron Ions in Multiferroic Bi1 − x LaxFeO3), Fiz. Tverd. Tela, 2009, vol. 51, no. 3, pp. 518–524.

    Google Scholar 

  27. Lebeugle, D., Colson, D., Forget, A., et al., Electric-Field-Induced Spin Flop in BiFeO3 Single Crystals at Room Temperature, Phys. Rev. Lett., 2008, vol. 100, p. 227602.

    Article  CAS  Google Scholar 

  28. Simoes, A.Z., Cavalcante, L.S., Riccardi, C.S., et al., Ferroelectric and Dielectric Behaviour of Bi0.92La0.08FeO3 Multiferroic Thin Films Prepared by Soft Chemistry Route, J. Sol-Gel. Technol., 2007, vol. 44, pp. 269–273.

    Article  CAS  Google Scholar 

  29. Amirov, A.A., Kamilov, I.K, Batdalov, A.B., et al., Magnetoelectric interaction in multiferroics BiFeO3, Bi0.95Nd0.05FeO3 and Bi0.95La0.05FeO3), Pis’ma Zh. Eskp. Teor. Fiz., 2008, vol. 34, no. 17, pp. 72–77.

    Google Scholar 

  30. Van Minh, N. and Viet Thang, D., Dopant Effects on The Structural, Optical and Electromagnetic Properties in Multiferroic Bi1 − x YxFeO3 Ceramics, J. Alloy. Comp., 2010, vol. 505, pp. 619–622.

    Article  CAS  Google Scholar 

  31. Hou, Z.-L., Zhou, H.-F., Yuan, J., et al., Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi0.95Y0.05FeO3 Nanocrystals, Chin. Phys. Lett., 2011, vol. 28, no. 3, p. 037702.

    Article  CAS  Google Scholar 

  32. Simoes, A.Z., Cavalcante, L.S., Moura, F. et al., Structure, Ferroelectric/Magnetoelectric Properties and Leakage Current Density of Bi0.85Nd0.15FeO3 Thin Films, J. Alloy. Comp., 2011, vol. 509, pp. 5326–5335.

    Article  CAS  Google Scholar 

  33. Leontyev, I.N., Yuzyuk, Yu.I., Janolin, P-E., et al., Orthorhombic Polar Nd-doped BiFeO3 Thin Film on MgO Substrate, J. Phys. Cond. Mater., 2011, vol. 23, p. 332201.

    Article  CAS  Google Scholar 

  34. Minh, N.V. and Quan, N.G., Structural, Optical and Electromagnetic Properties of Bi1 − x HoxFeO3 Multiferroic Materials, J. Alloy. Comp., 2011, vol. 509, p. 2663.

    Article  CAS  Google Scholar 

  35. Jun, Y.-K., Moon, W.-T., Chang, C.-M., et al., Effects of Nb-doping on Electric and Magnetic Properties in Multiferroic BiFeO3 Ceramics, Sol. State Commun., 2005, vol. 135, pp. 133–137.

    Article  CAS  Google Scholar 

  36. Simoes, A.Z., Pianno, R.F., Aguiar, E.C., et al., Effect of Niobium Dopant on Fatigue Characteristics of BiFeO3 Thin Films Grown on Pt Electrodes, J. Alloys Comp., 2009, vol. 479, pp. 274–279.

    Article  CAS  Google Scholar 

  37. Zhang, Z., Wu, P., Chen, L., et al., Systematic Variations in Structural and Electronic Properties of BiFeO3 by A-Site substitution, Appl. Phys. Lett., 2010, vol. 96, p. 012905.

    Article  CAS  Google Scholar 

  38. Yan, F., Lai, M.-On, and Lu, L., Enhanced Multiferroic Properties and Valence Effect of Ru-Doped BiFeO3 Thin Films, J. Phys. Chem., 2010, vol. 114, no. 15, pp. 6994–6998.

    CAS  Google Scholar 

  39. Chen, S., Wang, L., Xuan, H., et al., Multiferroic Properties and Converse Magnetoelectric Effect in Bi1 − x CaxFeO3 Ceramics, J. Alloys Comp., 2010, vol. 506, pp. 537–540.

    Article  CAS  Google Scholar 

  40. Zhou, J.S. and Goodenaugh, J.B., Intrinsic Structural Distortion in Orthorhombic Perovskite Oxides, Phys. Rev. B. 2008, vol. 77, p. 132104.

    Article  CAS  Google Scholar 

  41. Naik, V.B. and Mahendiran, R., Magnetic and Magnetoelectric Studies in Pure and Cation Doped BiFeO3, ArXiv:0902.1283v1 [cond-mat.mtrl-sci], 2009.

  42. Xu, Q., Wen, Zh., Gao, J., et al., The Multiferroic Properties of (Bi0.9Ba0.1)(Fe0.95Mn0.05)O3 Films, J. Supercond., 2011, vol. 24, no. 5, pp. 1497–1500.

    Article  CAS  Google Scholar 

  43. Wang, D.Y., Chan, N.Y., Zheng, R.K., et al., Multiferroism in Orientational Engineered (La,Mn) Co-substituted BiFeO3 Thin Films, J. Appl. Phys., 2011, vol. 109, p. 114105.

    Article  CAS  Google Scholar 

  44. Eerenstein, W., Morrison, F.D., Dho, J., Blamire, M.G., Scott, J.F., and Mathur, N.D., Comment on “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science, 2005, vol. 307, p. 1203.

    Article  CAS  Google Scholar 

  45. Lahmar, A., Habouti, S., Solterbeck, C.-H., et al., Multiferroic Properties of Bi0.9Gd0.1Fe0.9Mn0.1O3 Thin Film, J. Appl. Phys., 2010, vol. 107, p. 024104.

    Article  CAS  Google Scholar 

  46. Moreau, J.M., Michel, C., Gerson, R., et al., Ferroelectric BiFeO3 X-Ray and Neutron Diffraction Study, J. Phys. Chem. Solids, 1971, vol. 32, no. 6, pp. 1315–1320.

    Article  CAS  Google Scholar 

  47. Cheng, Z., Wang, X.L., Du, Y., et al., A Way to Enhance the Magnetic Moment of Multiferroic Bismuth Ferrite, J. Phys. D., 2010, vol.43, no. 24, p. 242001.

    Article  CAS  Google Scholar 

  48. Cushing, B.L., Kolesnichenko, V.L., and O’Connor, C.J., Recent Advances in Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev., 2004, vol. 104, pp. 3893–3946.

    Article  CAS  Google Scholar 

  49. Guimaraes, A.P., Principles of Nanomagnetism, New York: Springer, 2009.

    Book  Google Scholar 

  50. Mazumder, R., Devi, P.S., Bhattacharya, D., et al., Ferromagnetism in Nanoscale BiFeO3, Appl. Phys. Lett., 2007, vol. 91, p. 062510.

    Article  CAS  Google Scholar 

  51. Goswami, S., Bhattacharya, D., and Choudhury, P, Particle Size Dependent of Magnetization and Non-Centrosymmetry in Nanoscale BiFeO3, ArXiv:1012.4288v1, [cond-mat.mtrl-sci], 2010.

  52. Goswami, S., Bhattacharya, D., Choudhury, P., et al., Multiferroic Coupling in Nanoscale BiFeO3. ArXiv:1107.5133v1 [cond-mat.mtrl-sci], 2011.

  53. Hu, Y., Fei, L., Zhang, Y., et al., Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature, J. Nanomater, vol. 2011, pp. 1–6.

  54. Park, T.-J., Papaefthymiou, G.C., Viescas, A.J., et al., Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles, Nano Lett., 2007, vol. 7, no. 3, pp. 766–772.

    Article  CAS  Google Scholar 

  55. Yu, X.Z., Onose, Y., Kanazawa, N., et al., Real-Space Observation of a Two-Dimensional Skyrmion Crystal, Nature, 2010, vol. 465, pp. 901–904.

    Article  CAS  Google Scholar 

  56. Ahadi, K., Mahdavi, S. M., Nemati, A., et al., Photoconductivity and Diode Effect in Bi-Rich Multiferroic BiFeO3 Thin Films Grown by Pulsed-Laser Deposition, J. Mater. Sci.: Mater. Electron., 2011, vol. 22, pp. 815–820.

    Article  CAS  Google Scholar 

  57. Yang, S.Y., Martin, L.W., Byrnes, S.J., et al., Photovoltaic Effects in BiFeO3, J. Appl. Phys., 2009, vol. 95, p. 062909.

    Google Scholar 

  58. Palai, R., Katiyar, R.S., Schmidt, H., et al., The β Phase of Multiferroic Bismuth Ferrite and Its Γ-β Metal-Insulator Transition, Phys. Rev. B, 2008, vol. 77, p. 014110.

    Article  CAS  Google Scholar 

  59. Gavriliuk, A.G., Struzhkin, V.V., Lyubutin, I.S., et al., Phase Transition with Suppression of Magnetism in BiFeO3 at High Pressure, JETP Lett., 2005, vol. 82, pp. 224–227.

    Article  CAS  Google Scholar 

  60. Gavrilyuk, A.G., Struzhkin, V.V., Lyubutin, I.S., et al., Another Mechanism for the Insulator-Metal Transition Observed in Mott Insulators, Phys. Rev. B., 2008, vol. 77, p. 155112.

    Article  CAS  Google Scholar 

  61. Arnold, D.C., Knight, K.S., Catalan, G., et al., The β to Γ (Insulator-Metal) Transition in BiFeO3, Adv. Mater., 2010, vol. 20, no. 13, pp. 2116–2123.

    CAS  Google Scholar 

  62. Arnold, D.C., Knight, K.S., Morrison, F.D., et al., The Ferroelectric-Paraelectric Transition in BiFeO3: Crystal Structure of the Orthorhombic β-Phase, Phys. Rev. Lett., 2009, vol. 102, p. 027602.

    Article  CAS  Google Scholar 

  63. Massa, N.E., del Campo, L., Meneses, D.d.S., et al., High Temperature Emissivity, Reflectivity, and X-Ray Absorption of BiFeO3, J. Appl. Phys., 2010, vol. 108, p. 084114.

    Article  CAS  Google Scholar 

  64. Volkova, L.M. and Marinin, D.V., Magnetoelectric Ordering of BiFeO3 and the Search for Multiferroics from the Perspective of Crystal Chemistry, J. Supercond., 2011, vol. 24, no. 7, pp. 2161–2177.

    Article  CAS  Google Scholar 

  65. Guennou, M., Bouvier, P., Chen, G.S., et al., Multiple High-Pressure Phase Transitions in BiFeO3, ArXiv: 1108.0704v1, 2011.

  66. Bea, H., Dupe, B., Fusil, S., et al., Evidence for RoomTemperature Multiferroicity in a Compound with a Giant Axial Ratio, Phys. Rev. Lett., 2009, vol. 102, p. 217603.

    Article  CAS  Google Scholar 

  67. Zeches, R.J., Rossel, M.D., Zhang, J.X., et al., A Strain-Driven Morphotropic Phase Boundary in BiFeO3, Science, 2009, vol. 326, no. 5955, p. 977.

    Article  CAS  Google Scholar 

  68. Ederer, C. and Spaldin, N.A., Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics, Phys. Rev. Lett., 2005, vol. 95, p. 257601.

    Article  CAS  Google Scholar 

  69. MacDougall, G.J., Christen, H.M., Siemons W., et al., Antiferromagnetic Transitions in ‘T-like’ BiFeO3, ArXiv:1107.2975v1, 2011.

  70. Ding, H.-C. and Duan, C.-G., Electric-Field Control of Magnetic Ordering in the Tetragonal BiFeO3, ArXiv:1106.1502, 2011.

  71. Yang, C.-H., Seidel, J., Kim, S.Y., et al., Electric Modulation of Conduction in Multiferroic Ca-Doped BiFeO3 Films, Nat. Mater., 2009, vol. 8, pp. 485–493.

    Article  CAS  Google Scholar 

  72. Catalan, G., Sardar, K., Church, N.S., et al., Effect of Chemical Pressure on the Magnetic Transitions of Multiferroic BiFeO3, Phys. Rev. B, 2009, vol. 79, p. 212415.

    Article  CAS  Google Scholar 

  73. Infante, I.C., Juraszek, J., Fusil, S., et al., Multiferroic Phase Transition Near Room Temperature in BiFeO3, ArXiv:1105.6016v1 [cond-mat.mtrl-sci], 2011.

  74. Palewicz, A., Przeniosło, R., Sosnowska, I., and Hewat, A.W., Atomic Displacements in BiFeO3 as a Function of Temperature: Neutron Diffraction Study, Acta Cryst., B., 2007, vol. 63, pp. 537–544.

    Article  CAS  Google Scholar 

  75. Palai, R., Katiyar, R.S., Schmid, H., et al., Beta Phase and Gamma-Beta Metal-Insulator Transition in Multiferroic BiFeO3, Phys. Rev., B., 2008, vol. 77, p. 014110.

    Article  CAS  Google Scholar 

  76. Calderon, M.J., Liang, S., Yu, R., et al., Magnetoelectric Coupling at the Interface of BiFeO3/La0.7 Sr0.3MnO3 Multilayers, ArXiv:1012.1448v1, 2010.

  77. Salafranca, J., Calderon, M.J., and Bray L., Electron Gas at the Interface between Two Antiferromagnetic Insulating Manganites, Phys. Rev., B., 2008. vol. 77, p. 014441.

    Article  CAS  Google Scholar 

  78. Seidel, J., Martin, L.W., Hel, Q., et al., Conduction at Domain Walls in Oxide Multiferroics, Natur. Mater., 2009, vol. 8, pp. 229–234.

    Article  CAS  Google Scholar 

  79. Seidel, J., Fu, D., Yang, S.-Y., et al., Photovoltaic Current Generation at Ferroelectric Domain Walls, Phys. Rev. Lett., 2011, vol. 107, p. 126805.

    Article  CAS  Google Scholar 

  80. Kalinkin, A.N. and Skorikov, V.M., Skirmion Lattices in Multiferroic BiFeO3, Neorg. Mater., 2011, vol. 47, no. 1, pp. 69–73.

    Article  CAS  Google Scholar 

  81. Hong, L., On Nanoferroelectric Domain Structures and Distribution of Defects in Ferroelectrics, Ph.D. Dissertation, University of Hong Kong. 2010.

  82. Stishov, S.M. and Petrova, A.E., Helical Zone Magnetic MnSi, Usp. Fiz. Nauk., 2011, vol. 181, no. 11, pp. 1157–1170.

    Article  CAS  Google Scholar 

  83. Scott, F., Ferroelectric memories, Heidelberg: Springer, 2000.

    Google Scholar 

  84. Gulyaev, Yu.V., Kalinkin, A.N., Mityagin, A.Yu., and Khlopov, B.V., Inorganic materials for hard magnetic media, Inorg. Mater., 2010, vol. 46, no. 13, pp. 1403–1420.

    Article  CAS  Google Scholar 

  85. Blom, P.W.M., Wolf, R.M., Cillessen, J.F.M., et al., Ferroelectric Schottky Diode, Phys. Rev. Lett., 1994, vol. 73, no. 15, pp. 2107–2110.

    Article  CAS  Google Scholar 

  86. Choi, T., Lee, S., Choi, Y.J., et al., Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3, Science, 2009, vol. 324, no. 5923, pp. 63–66.

    Article  CAS  Google Scholar 

  87. Wang, C., Jin, K.-J., Xu, Z.-T., et al., Switchable Diode Effect and Ferroelectric Resistive Switching in Epataxial BiFeO3 Thin Films, Appl. Phys. Lett., 2011, vol. 98, p. 192901.

    Article  CAS  Google Scholar 

  88. Jiang, A.Q., Wang, C., Jin, K.J., et al., A Resistive Memory in Semiconducting BiFeO3 Thin-Film Capacitors, Adv. Mater., 2011, vol. 23, pp. 1277–1281.

    Article  CAS  Google Scholar 

  89. Zheludev, I.S., Perekalina, T.M., Smirnovskaya, E.M., et al., Magnetic Properties of Nickel-Iodide Boracite), Zh. Eksp. Teor. Fiz., 1974, vol. 20, p. 129.

    Google Scholar 

  90. Sannikov, D.G. and Zheludev, I.S., On the Possibility of Phase Transions with the Formation of Spontaneous Torroidal Mmoment in Nickel Boracite, Fiz. Tverd. Tela, 1985, vol. 27, p. 826.

    Google Scholar 

  91. Gorbatsevich, A.A. and Kopaev, Y.V., Toroidal Order in Crystals, Ferroelectrics, 1994, vol. 161, p. 321.

    Article  CAS  Google Scholar 

  92. Naumov, I., Bellaiche, L.Fu H., Unusial Phase Transitions in Ferroelectric Nanodiscs and Nanorods, Nature, 2004, vol. 432, pp. 737–740.

    Article  CAS  Google Scholar 

  93. Naumov, I. and Fu, H., Vortex-to-Polarization Phase in Ferroelectric Pb(ZrTi)O3 Nanoparticles, Phys. Rev. Lett., 2007, vol. 98, p. 077603.

    Article  CAS  Google Scholar 

  94. Naumov, I. and Bratkovsky, A.M., Unusial Polarization Patterns in Flat Epitaxial Ferroelectric Nanoparticles, Phys. Rev. Lett., 2008, vol. 101, p. 107601.

    Article  CAS  Google Scholar 

  95. Naumov, I., Bellaiche, L., Prosandeev, S., et al. Ferroelectric Nanostructure Having Switchable Multi-stable Vortex States. US Patent 7593250, 2009.

  96. Nelson, C.T., Winchester, B., Zhang, Y., et al., Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces, Nano Lett., 2011, vol. 11, pp. 828–834.

    Article  CAS  Google Scholar 

  97. Vasudevan, R.K., Chen, Y.-C., Tai, H.-H., et al., Exploring Topological Defects in Epitaxial BiFeO3 Thin Films, ACS Nano, 2011, vol. 5., no. 2, pp. 879–887.

    Article  CAS  Google Scholar 

  98. Balke, N., Winchester, B., Ren, W., et al., Enchanced Electric Conductivity at Ferroelectric Vortex Cores in BiFeO3, Nature Phys., 2011, no. 2132, November 6, 2011.

  99. Yamada, K., Kasai, S., Nakatani, Y., et al., Electrical Switching of the Vortex Core in a Magnetic Disk, Nat. Mater., 2007, vol. 6, no. 4, pp. 270–273.

    Article  CAS  Google Scholar 

  100. Bogdanov, A.N. and Yablonsky, D.A., Thermodynamically Stable Vortexes in Magnet Ordered Crystals. A Mixed State of Magnetics, Zh. Eksp. Teor. Fiz., 1989, vol. 95, no. 1, pp. 178–182.

    Google Scholar 

  101. Bogdanov, A. and Hubert, A., Thermodynamically Stable Magnetic Vortex States in Magnetic Crystals, J. Mag. Mag. Mater., 1994, vol. 38, pp. 255–269.

    Article  Google Scholar 

  102. Van Waeyenberge, B., Puzic, A., Stoll, H., et al., Magnetic Vortex Core Reversal by Excitation with Short Bursts of an Alternating Field, Nature, 2006, vol. 444, no. 11, p. 461.

    Article  CAS  Google Scholar 

  103. Pigeau, B., de Loubens, G., Klein, O., et al., A Frequency-Controlled Magnetic Vortex Memory, ArXiv: 1003.0158v1 [cond-mat.mtrl-sci], 2010.

  104. Yu, X. Z., Onose, Y., Kanazawa, N., et al., Real-Space Observation of a Two-Dimensional Skyrmion Crystal, Nature, 2010, vol. 465, pp. 901–904.

    Article  CAS  Google Scholar 

  105. Yu, X.Z., Kanazawa, N., Onose, Y., et al., Near Room-Temperature Formation of a Skyrmion Crystal in Thin-Films of the Helimagnet FeGe, Nature Mater., 2011, vol. 10, pp. 106–109.

    Article  CAS  Google Scholar 

  106. Muhlbauer, S., Binz, B., Jonietz, F., et al. Skyrmion Lattice in a Chiral Magnet, Science, 2009, vol. 323, no. 5916, pp. 915–919.

    Article  CAS  Google Scholar 

  107. Zavaliche, F., Zheng, H., Mohaddes-Ardabili, L., et al., Electric Field Induced Magnetization Switching in Epitaxial Columnar Nanostructures, Nano Lett., 2005, vol. 5, pp. 1793–1796.

    Article  CAS  Google Scholar 

  108. Kalinkin, A.N. and Skorikov, V.M., Torroidal Solitons in Oxide Magnetics, Bose-Einstein Condensate and Other Media, Neorg. Mater., 2007, vol. 43, no. 4, pp. 600–610.

    Google Scholar 

  109. Kalinkin, A.N., and Skorikov V.M., Torroidal Spin Ordering in BiFeO3, GaFeO3, and Cr2O3 in the Framework of Faddeev Model with a Magnetic Field, Neorg. Mater., 2009, vol. 45, no. 2, pp. 227–230.

    Article  CAS  Google Scholar 

  110. Mochizuki, M., Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals, ArXiv:1111.5667v1 [cond-mat.str-el], 2011.

  111. Merano, E.C. and Neto, M.B.S., Quantum Skyrmions and the Destruction of Long-Range Antiferromagnetic Order in the High-TC Superconductors La2-x SrxCuO4 and YBa2Cu3O6 + x , Phys. Rev. B., 2001, vol. 64, no. 9, p. 092511.

    Article  CAS  Google Scholar 

  112. Crassous, A., Bernard, R., Fusil, S., et al., Nanoscale Ferroelectric Manipulation of Magnetic Flux Quanta, ArXiv:1109.1671v1, 2011.

  113. Werner-Malento, K., Tsarou, A., Dluzewski, P., et al., Structure and Magnetic Characterization of BiFeO3/YBa2Cu3O7 Bilayers, Acta Phys. Polon., 2009, vol. 115, no. 1, pp. 95–97.

    CAS  Google Scholar 

  114. Yang, S.Y., Martin, L.W., Byrnes, S.J., et al., Photovoltaic Effects in BiFeO3, Appl. Phys. Lett., 2009, vol. 95, p. 062909.

    Article  CAS  Google Scholar 

  115. Seidel, J., Fu, D., Yang, S.-Y., et al., Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls, Phys. Rev. Lett., 2010, vol. 107, p. 126805.

    Article  CAS  Google Scholar 

  116. Ahadi, K., Mahdavi, S.M., Nemati, A., et al., Photoconductivity and Diode Effect in Bi-Rich Multiferroic BiFeO3 Thin Films Grown by Pulsed-Laser Deposition, J. Mater. Sci.: Mater. Electron., 2011, vol. 22, pp. 815–820.

    Article  CAS  Google Scholar 

  117. Yang, H., Luo, H.M., Wang, H., et al., Rectifying Current-Voltage Characteristics of BiFeO3/Nb-Doped SrTiO3 Heterojunction, Appl. Phys. Lett., 2008, vol. 92, p. 102113.

    Article  CAS  Google Scholar 

  118. Veselago, V.G., Electrodynamics of Compounds with Simultaneously Negative ɛ and μ Values, Usp. Fiz. Nauk., 1967, vol. 92, no. 3, pp. 517–526.

    Article  CAS  Google Scholar 

  119. Pendry, J.B., Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett., 2000, vol. 85, pp. 3966–3969.

    Article  CAS  Google Scholar 

  120. Kehr, S.C., Yu., P., Liu, Y., et al. Microspectroscopy on Perovskite-based Superlenses, Optics Mater. Express, 2011, vol. 1, no. 5, pp. 1051–1060.

    Article  CAS  Google Scholar 

  121. Belov, P.A., Bespalov, V.G., Vasil’ev, V.N., et al., Opticheskie processory: dostizheniya i novye novye idei (Optical Processors: Achievements and New Ideas), Gurov, I.P., and Kozlov, S.A., Eds., St. Petersburg: St. Petersburg State Univ., 2006, pp. 6–31.

    Google Scholar 

  122. Gao, F., Chen, X., Yin, K., et al., Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles, Adv. Mater. 2007, vol. 19, pp. 2889–2892.

    Article  CAS  Google Scholar 

  123. Guo, R., Fang, L., Dong W., et al., Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles, J. Phys. Chem. C., 2010, vol. 114, pp. 21390–21396.

    Article  CAS  Google Scholar 

  124. Gulyaev, Yu.V. and Nikitov, S.A., Magnon Crystal-Spin Waves in Peroidic Structures, Dokl. Akad. Nauk, 2001, vol. 380, no. 4, pp. 469–471.

    CAS  Google Scholar 

  125. Kruglyak, V.V., Demokritov, S.O., and Grundler, D., Magnonics, J. Phys. D., 2010, vol. 43, p. 264001.

    Article  CAS  Google Scholar 

  126. Lenk, B., Ulrichs, H., Garbs, F., et al., The Building Blocks of Magnonics, ArXiv:1101.0479v1, 2011.

  127. Gazeous, M., Gallais, Y., Sacuto, A., et al., Possible Observation of Cycloidal Electromagnons in BiFeO3, Phys. Rev. Lett., 2008, vol. 101, pp. 037601.

    Article  CAS  Google Scholar 

  128. Rovillan, P., de Sousa, R., Gallais, Y., et al., Electric-Field Control of Spin Waves at Room Temperature in Multiferroic BiFeO3, Natur. Mat., 2010, vol. 9, p. 975.

    Article  CAS  Google Scholar 

  129. Bar’yakhtar, V.G. and Chupis I.E., Quantum Theory of Oscillations in Segnetomagnetic Substances, Fiz. Tverd. Tela), 1970, vol. 11, pp. 2628–2631.

    Google Scholar 

  130. Pimenov, A., Mukhin, A.A., Ivanov, V.Yu., et al., Possible Evidence for Electromagnons in Multiferroic Manganites, Natur. Phys., 2006, vol. 2, p. 97.

    Article  CAS  Google Scholar 

  131. Mochizuki, M. and Nagaosa, N., Numerical Simulation of Spin Chirality Switching in Multiferroics via Intense Electromagnon Excitations, ArXiv:1102.3762v1 [cond-mat.str-el], 2011.

  132. Kostylev, M.P., Serga, A.A., Schneider, T., et al. Spin-Wave Logical Gates, Appl. Phys. Lett., 2005, vol. 87, p. 153501.

    Article  CAS  Google Scholar 

  133. Makoed I.I., Poluchenie i fizicheskie svoistva multiferroikov (Preparation and Physical Properties of Multiferroic Substances), Brest: Brest State Univ., 2009.

    Google Scholar 

  134. Fruth, V., Popa, M., Calderon-Moreno, J., et al., Perovskite-Type Nanopowders and Thin Films Obtained by Chemical Methods, Proc.Appl. Ceram., 2010, vol. 4, pp. 167–182.

    CAS  Google Scholar 

  135. Mazumder, R. and Sen, A., Effect of Pb-Doping on Dielectric Properties of BiFeO3 Ceramics, J. Alloys Comp., 2009, vol. 475, pp. 5777–5802.

    Article  CAS  Google Scholar 

  136. Shetty, S., Palkar, V.R., and Pinto, R., Size Effect Study in Magnetoelectric BiFeO3 System, J. Phys., 2002, vol. 58, pp. 1027–1030.

    CAS  Google Scholar 

  137. Hojamberdiev, M., Xu, Y, Wang, F., et al., Morphology-Controlled Hydrothermal Synthesis of Bismuth Ferrite Using Various Alraline Mineralizers, Ceramics-Silicates, 2009, vol. 53, no. 2, pp. 113–117.

    CAS  Google Scholar 

  138. Li, S., Lin, Y.-H., Zhang, B.-P., et al. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors, J. Phys. Chem. C., 2010, vol. 114, pp. 2903–2908.

    Article  CAS  Google Scholar 

  139. Jiang, H., Morozumi, Y., Kumada, N., et al., Hydrothermal Synthesis of Perovskite-Type BiFeO3, J. Ceram. Soc. Jpn., 2008, vol. 116, no. 7, pp. 8397–839.

    Google Scholar 

  140. Farhadi, S. and Rashidi, N., Preparation and Characterisation of Pure Single-Phase BiFeO3 Nanoparticles through Thermal Decomposition of the Heteronuclear Bi[Fe(CN)6] · 5H2O Complex, Polyhedron, 2010, vol. 29, pp. 2959–2965.

    Article  CAS  Google Scholar 

  141. Simoes, A.Z., Riccardi, C.S., Dos Santos, M.L., et al., Effect of Annealing Atmosphere on Phase Formation and Electrical Characteristics of Bismuth Ferrite Thin Films, Mater. Res. Bull., 2009, vol. 44, pp. 1747–1752.

    Article  CAS  Google Scholar 

  142. Gonzalez, A.H.M., Simoes, A.Z., Cavalcante, L.S., et al., Soft Chemical Deposition of BiFeO3 Multiferroic Thin Films, Appl. Phys. Lett., 2007, vol. 90, p. 052906.

    Article  CAS  Google Scholar 

  143. Sakamoto, W., Iwata, A., and Yogo, T., Ferroelectric Properties of Chemically Synthesized Perovskite BiFeO3-PbTiO3 Thin Films, J. Appl. Phys., 2008, vol. 104, p. 104106.

    Article  CAS  Google Scholar 

  144. Quan, Z., Hu, H., Xu, S., et al., Surface Chemical Bonding States and Ferroelectricity of Ce-doped BiFeO3 Thin Films Prepared by Sol-Gel Process, J. Sol-Gel Sci. Technol., 2008, vol. 48, pp. 261–266.

    Article  CAS  Google Scholar 

  145. Fukumura, H., Maysui, S., Tonari, N., et al., Synthesis and Characterization of Mn-Doped BiFeO3 Nanoparticles, Acta Phys. Polon., A, 2009, vol. 116, no. 1, pp. 47–50.

    CAS  Google Scholar 

  146. Fei, L., Chemical Synthesis and Characterization of Bismuth Ferrite Nanostructures, Ph.D. Dissertation, Hong Kong, 2011.

  147. Cushing, B.L., Kolesnichenko, V.L., and O’Connor, C.J., Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev., 2004, vol. 104, pp. 3893–3946.

    Article  CAS  Google Scholar 

  148. Lebeugle, D., Colson, D., Forget, A., et al., Room Temperature Coexistance of Large Electric Polarization and Magnetic Order in BiFeO3, Phys. Rev. B., 2007, vol. 76, p. 024116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Polyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skorikov, V.M., Kalinkin, A.N. & Polyakov, A.E. Magnetic and electrical properties of multiferroic BiFeO3, its synthesis and applications. Inorg Mater 48, 1210–1225 (2012). https://doi.org/10.1134/S0020168512130043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512130043

Keywords

Navigation