Skip to main content
Log in

Low- and intermediate-temperature proton-conducting electrolytes

  • Published:
Inorganic Materials Aims and scope

Abstract

We consider the main achievements and problems in the field of proton-conducting solid electrolytes. Because of the extremely small proton radius, mechanisms of proton transport differ drastically from those for other ions. This review examines general aspects of proton transport in low- and intermediate-temperature proton-conducting solid electrolytes, such as hydrated acids, acid salts, and bases and anhydrous acid salts. Proton transport in these materials is due to a sequence of rotations of proton-containing groups and proton hops between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brett, D.J., Atkinson, A., Brandon, N.P., and Skinner, S.J., Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 2008, vol. 37, pp. 1568–1578.

    Article  CAS  Google Scholar 

  2. Malavasi, L., Fisher, C.A.J., and Islam, M.S., Oxideion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem. Soc. Rev., 2010, vol. 39, pp. 4370–4387.

    Article  CAS  Google Scholar 

  3. Paschos, O., Kunze, J., Stimming, U., and Maglia, F., A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells, J. Phys. Condens. Matter, 2011, vol. 23, paper 234 110.

    Article  Google Scholar 

  4. Yaroslavtsev, A.B., Dobrovol’skii, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Rus. Chem. Rev., 2012, vol. 81, pp. 191–220.

    Article  CAS  Google Scholar 

  5. Stenina, I.A., Safronova, E.Yu., Levchenko, A.V., Dobrovol’skii, Yu.A., and Yaroslavtsev, A.B., Lowtemperature fuel cells: potential applications in energy storage systems and related materials, Thermal Engineering, 2016, vol. 3, pp. 385–398.

    Article  Google Scholar 

  6. Popel’, O.S., Self-contained renewable energy systems, Energosberezhenie, 2006, no. 3, pp. 70–76.

    Google Scholar 

  7. Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Membrane catalysis in dehydrogenation and hydrogen generation processes, Rus. Chem. Rev., 2013, vol. 82, pp. 352–368.

    Article  Google Scholar 

  8. DeCoursey, T.E. and Cherny, V.V., Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes, J. Gen. Physiol., 1998, vol. 112, pp. 503–522.

    CAS  Google Scholar 

  9. Kreuer, K.D., Proton conductivity, materials and applications, Chem. Mater., 1996, vol. 8, pp. 610–641.

    Article  CAS  Google Scholar 

  10. Alberti, G., Cherubini, F., and Palombari, R., Amperometric solid-state sensor for NO and NO2 based on protonic conduction, Sens. Actuators, B, 1996, vol. 37, pp. 131–134.

    Article  CAS  Google Scholar 

  11. Kotov, V.Yu. and Yaroslavtsev, A.B., Proton mobility in hydrated inorganic acids and acid salts, Russ. Chem. Bull., 2002, pp. 515–528.

    Google Scholar 

  12. Yaroslavtsev, A.B., Main directions in the development and investigation of solid electrolytes, Rus. Chem. Rev., 2016, vol. 85, pp. 1255–1276.

    Article  Google Scholar 

  13. Alberti, G. and Casciola, M., Solid state protonic conductors, present main applications and future prospects, Solid State Ionics, 2001, vol. 145, pp. 3–16.

    CAS  Google Scholar 

  14. Yaroslavtsev, A.B., Modification of solid state proton conductors, Solid State Ionics, 2005, vol. 176, pp. 2935–2940.

    Article  CAS  Google Scholar 

  15. Yaroslavtsev, A.B., Proton conductivity of inorganic hydrates, Rus. Chem. Rev., 1994, vol. 63, pp. 449–455.

    Article  CAS  Google Scholar 

  16. Kreuer, K.D., Proton conducting oxides, Annu. Rev. Mater. Res., 2003, vol. 33, pp. 333–359.

    Article  CAS  Google Scholar 

  17. Yaroslavtsev, A.B., Khimiya tverdogo tela (Solid-State Chemistry), Moscow: Nauchnyi Mir, 2009.

  18. Prozorovskaya, Z.N., Chuvaev, V.F., and Yaroslavtsev, A.B., State of hydrated proton forms in inorganic acids and acid salts, Russ. J. Inorg. Chem., 1990, vol. 35, pp. 1645–1655.

    Google Scholar 

  19. Bernal, J.D. and Fowler, R.H., A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys., 1933, vol. 1, pp. 515–548.

    Article  CAS  Google Scholar 

  20. Yaroslavtsev, A.B. and Gorbatchev, D.L., Proton mobility in the solid inorganic hydrates of acids and acid salts, J. Mol. Struct., 1997, vol. 416, pp. 63–67.

    Article  CAS  Google Scholar 

  21. Kreuer, K.D., Rabenau, A., and Weppner, W., Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors, Angew. Chem., Int. Ed., 1982, vol. 21, pp. 208–209.

    Google Scholar 

  22. Yaroslavtsev, A.B., Rotational mobility of proton-containing groups in inorganic crystalline hydrates, Russ. J. Inorg. Chem., 1994, vol. 39, pp. 585–591.

    CAS  Google Scholar 

  23. Kreuer, K.D., On the complexity of proton conduction phenomena, Solid State Ionics, 2000, vols. 136–137, pp. 149–160.

    Article  Google Scholar 

  24. Yaroslavtsev, A.B. and Gorbachev, D.L., The proton conductivity in low temperature proton conductors, Mendeleev Commun., 1995, no. 2, pp. 46–49.

    Article  Google Scholar 

  25. Yaroslavtsev, A.B., Nikolaev, A.E., and Chuvaev, V.F., Synthesis and protonic conductivity of tantalum hydrogen phosphate, Russ. J. Inorg. Chem., 1996, vol. 41, no. 1, pp. 26–28.

    Google Scholar 

  26. Chernova, E.K., Prozorovskaya, Z.N., Chuvaev, V.F., and Yaroslavtsev, A.B., Proton conductivity of acid sulfates of some trivalent elements, Russ. J. Electrochem., 1990, vol. 26, pp. 1456–1460.

    Google Scholar 

  27. Nakamura, O., Kodama, T., Ogino, I., and Mikaga, Y., High-conductivity solid proton conductors: dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals, Chem. Lett., 1979, pp. 17–18.

    Google Scholar 

  28. Ahmad, M.I., Zaidi, S.M.J., Rahman, S.U., and Ahmed, S., Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications, Microporous Mesoporous Mater., 2006, vol. 91, pp. 296–304.

    Article  CAS  Google Scholar 

  29. Denisova, T.A., Leonidov, O.N., and Maksimova, L.G., Proton mobility in tungstic 12-heteropoly acids, Russ. J. Inorg. Chem., 2001, vol. 46, pp. 1553–1558.

    Google Scholar 

  30. Tian, N., Zhu, M., Wu, Q., Yan, W., and Yaroslavtsev, A.B., Preparation and conductivity of the Keggin-type trivanadium-substituted tungstosilicic acid H7SiW9V3O40 · 9H2O, Mater. Lett., 2014, vol. 115, pp. 165–167.

    Article  CAS  Google Scholar 

  31. Tong, X., Zhu, W.M., Wu, Q.Y., Qian, X.Y., Liu, Z., Yan, W.F., and Gong, J., Synthesis and conductivity of heptadecatungstovanadodiphosphoric heteropoly acid with Dawson structure, J. Alloys Compd., 2011, vol. 59, pp. 7768–7772.

    Article  Google Scholar 

  32. Tong, X., Wu, X.F., Wu, Q.Y., Zhu, W.M., Cao, F.H., and Yan, W.F., Pentadecatungstotrivanadodiphosphoric heteropoly acid with Dawson structure: synthesis, conductivity and conductive mechanism, Dalton Trans., 2012, vol. 41, pp. 9893–9896.

    Article  CAS  Google Scholar 

  33. Padiyan, D.P., Ethilton, S.J., and Murugesan, R., Protonic and photoconductivity studies on heteropolyanion of H3 + xPVxW12–xO40 · nH2O single crystals, Phys. Status Solidi, 2001, vol. 185, pp. 231–246.

    Article  CAS  Google Scholar 

  34. Tong, X., Tian, N., Wu, W., Zhu, W., Wu, Q., Cao, F., Yan, W., and Yaroslavtsev, A.B., Preparation and electrochemical performance of tungstovanadophosphoric heteropolyacid and its hybrid materials, J. Rhys. Chem. C, 2013, vol. 117, pp. 3258–3263.

    Article  CAS  Google Scholar 

  35. Huang, T.P., Wu, X.F., Wu, Q.Y., Cao, F.H., and Yan, W.F., Solid high-proton conductor tungstovanadozincic acid with transition metal as central atom: synthesis and conductivity, Funct. Mater. Lett., 2015, vol. 8, paper 1 550 041.

    Article  Google Scholar 

  36. Li, Y.Y., Huang, T.P., Wu, Q.Y., and Lin, X., Synthesis and conductive performance of quaternary molybdotungstovanadophosphoric heteropoly acid with Keggin structure, Mater. Lett., 2015, vol. 157, pp. 109–111.

    Article  CAS  Google Scholar 

  37. Wu, Q.Y., Synthesis and conductivity of undecatungsto chromoferrous heteropoly acid, Mater. Res. Bull., 2002, vol. 37, pp. 2199–2204.

    Article  CAS  Google Scholar 

  38. Wu, Q.Y., Sang, X.G., Liu, B., and Ponomareva, V.G., Synthesis and performance of high-proton conductor undecatungstochromoindic heteropoly acid, Mater. Lett., 2005, vol. 59, pp. 123–126.

    Article  CAS  Google Scholar 

  39. Wu, Q.Y., Sang, X.G., Shao, F., and Peng, W.Q., Synthesis and conductivity of undercatungstocobaltoindic heteropoly acid, Mater. Chem. Phys., 2005, vol. 92, pp. 16–20.

    Article  CAS  Google Scholar 

  40. Wang, Y.F. and Weinstock, I.A., Polyoxometalatedecorated nanoparticles, Chem. Soc. Rev., 2012, vol. 41, pp. 7479–7496.

    Article  CAS  Google Scholar 

  41. Kourasi, M., Wills, R.G.A., Shah, A.A., and Walsh, F.C., Heteropolyacids for fuel cell applications, Electrochim. Acta, 2014, vol. 127, pp. 454–466.

    Article  CAS  Google Scholar 

  42. Kim, W.B., Voitl, T., Rodriguez-Rivera, G.J., and Dumesic, J.A., Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts, Science, 2004, vol. 305, pp. 1280–1283.

    Article  CAS  Google Scholar 

  43. Yaroslavtseva, E.M., Chuvaev, V.F., and Yaroslavtsev, A.B., Hydrous thallium tungstophosphate: structure and electrical transport mechanism, Russ. J. Inorg. Chem., 1990, vol. 35, pp. 2769–2772.

    Google Scholar 

  44. Yaroslavtseva, E.M., Chuvaev, V.F., and Yaroslavtsev, A.B., Structure, properties, and electrical conductivity of highly hydrated potassium, rubidium, and cesium 12-tungstophosphates, Russ. J. Inorg. Chem., 1994, vol. 39, pp. 948–950.

    Google Scholar 

  45. Chikin, A.I., Chernyak, A.V., Jin, Z., Naumova, Yu.S., Ukshe, A.E., Smirnova, N.V., Volkov, V.I., and Dobrovolsky, Yu.A., Mobility of protons in 12-phosphotungstic acid and its acid and neutral salts, J. Solid State Electrochem., 2012, vol. 16, pp. 2767–2775.

    Article  CAS  Google Scholar 

  46. Safronova, E.Yu., Osipov, A.K., Baranchikov, A.E., and Yaroslavtsev, A.B., Proton conductivity of MxH3–x PX12O40 and MxH4–x SiX12O40 (M = Rb, Cs; X = W, Mo) acid salts of heteropolyacids, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1157–1162.

    CAS  Google Scholar 

  47. Yaroslavtsev, A.B. and Nikonenko, V.V., Ionexchange membrane materials: properties, modification and practical application, Nanotechnologies in Russia, 2009, vol. 4, nos. 3–4, pp. 137–159.

    Article  Google Scholar 

  48. Pourcelly, G., Nikonenko, V.V., Pismenskaya, N.D., and Yaroslavtsev, A.B., Applications of charged membranes in separation, fuel cells and emerging processes, Ionic Interactions in Natural and Synthetic Macromolecules, Ciferri, A. and Perico A., Eds., New York: Wiley, 2012, chapter 20, pp. 761–816.

  49. Kreuer, K.-D. and Portale, G., A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications, Adv. Funct. Mater., 2013, vol. 23, pp. 5390–5397.

    Article  CAS  Google Scholar 

  50. Kreuer, K.-D., Ion conducting membranes for fuel cells and other electrochemical devices, Chem. Mater., 2014, vol. 26, pp. 361–380.

    Article  CAS  Google Scholar 

  51. Safronova, E.Yu. and Yaroslavtsev, A.B., Potential applications of hybrid membranes, Petroleum Chem., 2016, vol. 56, pp. 281–293.

    Article  CAS  Google Scholar 

  52. Chérif, M., Mkacher, I., Dammak, L., Grande, D., Ben Salah, A., Walha, K., and Nikonenko, V., Water desalination by neutralization dialysis with ion-exchange membranes: flow rate and acid/alkali concentration effects, Desalination, 2015, vol. 361, pp. 13–24.

    Article  Google Scholar 

  53. Strathmann, H., Grabowski, A., and Eigenberger, G., Ion-exchange membranes in the chemical process industry. Global trends of electrodialysis research during 1991–2014: a bibliometric analysis, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 10364–10379.

    Article  CAS  Google Scholar 

  54. Yaroslavtsev, A.B., Perfluorinated ion-exchange membranes, Polym. Sci., Ser. A, 2013, vol. 55, no. 11, pp. 674–698.

    Article  CAS  Google Scholar 

  55. Gierke, T.D., Munn, G.E., and Wilson, F.C., The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle Xray studies, J. Polym. Sci.: Polym. Phys. Ed., 1981, vol. 19, pp. 1687–1704.

    CAS  Google Scholar 

  56. Nikonenko, V.V., Zabolotskii, V.I., and Yaroslavtsev, A.B., Ion transport in membrane and ion-exchange materials, Russ. Chem. Rev., 2003, vol. 72, pp. 393–421.

    Article  Google Scholar 

  57. Mauritz, K.A. and Moore, R.B., State of understanding of Nafion, Chem. Rev., 2004, vol. 104, pp. 4535–4585.

    Article  CAS  Google Scholar 

  58. Nikonenko, V.V., Yaroslavtsev, A.B., and Pourcelly, G., Ion transfer in and through charged membranes. Structure, properties, theory. Ionic Interactions in Natural and Synthetic Macromolecules, Ciferri, A. and Perico A., Eds., New York: Wiley, 2012, chapter 9, pp. 267–336.

  59. Steele, B.C.H. and Heinzel, A., Materials for fuel-cell technologies, Nature, 2001, vol. 414, pp. 345–352.

    Article  CAS  Google Scholar 

  60. Shao, Y., Yin, G., Wang, Z., and Gao, Y., Proton exchange membrane fuel cell from low temperature to high temperature: material challenges, J. Power Sources, 2007, vol. 167, pp. 235–242.

    Article  CAS  Google Scholar 

  61. Wan, Z., Chang, H., Shu, S., Wang, Y., and Tang, H., A review on cold start of proton exchange membrane fuel cells, Energies, 2014, vol. 7, pp. 3179–3203.

    Article  CAS  Google Scholar 

  62. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S.A., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, pp. 1602–1644.

    Article  CAS  Google Scholar 

  63. Advances in Hydrogen Production, Storage and Distribution, Iulianelli, B.A., Ed., Amsterdam: Woodhead, 2014.

  64. Lu, N. and Xie, D., Novel membrane reactor concepts for hydrogen production from hydrocarbons. A review, Int. J. Chem. React. Eng., 2016, vol. 14, pp. 1–31.

    Article  Google Scholar 

  65. Hedayati, A., Le Corre, O., Lacarrière, B., and Llorca, J., Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor, Catal. Today, 2016, vol. 268, pp. 68–78.

    Article  CAS  Google Scholar 

  66. Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., Belenov, S.V., Guterman, V.E., Efimov, M.N., and Yaroslavtsev, A.B., Bimetallic carbon nanocatalysts for methanol steam reforming in conventional and membrane reactors, Catal. Today, 2016, vol. 268, pp. 60–67.

    Article  CAS  Google Scholar 

  67. Ievlev, V.M., Solntsev, K.A., Dontsov, A.I., Maksimenko, A.A., and Kannykin, S.V., Hydrogen permeability of thin condensed Pd–Cu foil: dependence on temperature and phase composition, Tech. Phys., 2016, vol. 61, no. 3, pp. 467–469.

    Article  CAS  Google Scholar 

  68. Ievlev, V.M., Maksimenko, A.A., Sitnikov, A.I., Solntsev, K.A., Chernyavskii, A.S., and Dontsov, A.I., A cermet composite heterostructure for hydrogen ultrapurification membranes, Materialovedenie, 2016, no. 2, pp. 37–40.

    Google Scholar 

  69. Kreuer, K.D., Schuster, M., Obliers, B., Diat, O., Traub, U., Fuchs, A., and Klock, U., Short-side-chain proton conducting perfluorosulfonic acid ionomers: why they perform better in PEM fuel cells, J. Power Sources, 2008, vol. 178, pp. 499–509.

    Article  CAS  Google Scholar 

  70. Baikov, Yu.M., Ionic motion in various forms of solidstate alkali-metal hydroxides: individual compounds, eutectic mixtures, and crystalline hydrates, Solid State Ionics, 2012, vol. 208, pp. 17–24.

    Article  CAS  Google Scholar 

  71. Ivanov-Shitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: S.-Peterb. Univ., 2000, vol. 2.

  72. Baranov, A.I., Shuvalov, L.A., and Shchagina, N.M., Superionic conduction and phase transitions in crystals, Pis’ma Zh. Eksp. Teor. Fiz., 1982, vol. 36, pp. 381–384.

    CAS  Google Scholar 

  73. Baranov, A.I., Khizriichenko, V.P., Sandier, V.A., and Shuvalov, L.A., Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4, Ferroelectrics, 1988, vol. 81, pp. 183–186.

    Article  Google Scholar 

  74. Dupuis, A.C., Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques, Prog. Mater. Sci., 2011, vol. 56, pp. 289–327.

    Article  CAS  Google Scholar 

  75. Ponomareva, V.G., Intermediate-temperature protonconducting inorganic membranes, Membrany i membrannye tekhnologii (Membranes and Membrane Technologies), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013.

  76. Makarova, I.P., Superprotonics—crystals with rearranging hydrogen bonds, Phys. Solid State, 2015, vol. 57, no. 3, pp. 432–439.

    Article  Google Scholar 

  77. Baranov, A.I., Crystals with disordered hydrogenbond networks and superprotonic conductivity. Review, Crystallogr. Rep., 2003, vol. 48, no. 6, pp. 1012–1037.

    Article  CAS  Google Scholar 

  78. Merinov, B.M. and Bismayer, U., Atomic level mechanism of proton transport in alkali metal hydrogen sulfate and selenate superionic conductors, Solid State Ionics, 2000, vols. 136–137, pp. 223–227.

    Article  Google Scholar 

  79. Chisholm, C.R.I. and Haile, S.M., Entropy evaluation of the superprotonic phase of CsHSO4. Pauling’s ice rules adjusted for systems containing disordered hydrogen-bonded tetrahedra, Chem. Mater., 2007, vol. 19, pp. 270–279.

    Article  CAS  Google Scholar 

  80. Martsinkevich, V.V., Ponomareva, V.G., Drebushchak, T.N., Lavrova, G.V., and Shatskaya, S.S., Structure of Cs2–x (HSO4)1–x (H2PO4)x solid solutions, Inorg. Mater., 2010, vol. 46, pp. 765–769.

    Article  CAS  Google Scholar 

  81. Ponomareva, V.G. and Bagryantseva, I.N., Superprotonic CsH2PO4–CsHSO4 solid solutions, Inorg. Mater., 2012, vol. 48, no. 2, pp. 187–194.

    Article  CAS  Google Scholar 

  82. Chisholm, C.R.I. and Haile, S.M., Structure and thermal behavior of the new superprotonic conductor Cs2–x (HSO4)1–x (H2PO4)x, Acta Crystallogr., Sect. B: Struct. Sci., 1999, vol. 55, pp. 937–942.

    Article  CAS  Google Scholar 

  83. Haile, S.M. and Calkins, P.M., X-ray-diffraction study of Cs5(HSO4)3(H2PO4)2, a new solid acid with a unique hydrogen bond network, J. Solid State Chem., 1998, vol. 140, pp. 251–265.

    Article  CAS  Google Scholar 

  84. Haile, S.M., Lentz, G., Kreuer, K.-D., and Maier, J., Superprotonic conductivity in Cs3(HSO4)2H2PO4, Solid State Ionics, 1995, vol. 77, pp. 128–134.

    Article  CAS  Google Scholar 

  85. Ikeda, A., Kitchaev, D.A., and Haile, S.M., Phase behavior and superprotonic conductivity in the Cs1–x RbxH2PO4 and Cs1–x KxH2PO4 systems, J. Mater. Chem. A, 2014, vol. 2, pp. 204–214.

    Article  CAS  Google Scholar 

  86. Bagryantseva, I.N., Dunyushkina, L.A., and Ponomareva, V.G., Structural and transport properties of compounds in the CsHSO4–KH2PO4 system with a high potassium dihydrophosphate content, Russ. J. Electrochem., 2013, vol. 49, pp. 52–58.

    Article  CAS  Google Scholar 

  87. Ponomareva, V.G., Martsinkevich, V.V., and Chesalov, Yu.A., Transport and thermal characteristics of Cs1–xRbxH2PO4, Russ. J. Electrochem. 2011, vol. 47, no. 5, pp. 605–612.

    Article  CAS  Google Scholar 

  88. Haile, S.M., Boysen, D.A., Chisholm, C.R.I., and Merle, R.B., Solid acids as fuel cell electrolytes, Nature, 2001, vol. 410, pp. 910–913.

    Article  CAS  Google Scholar 

  89. Baranov, A.I., Grebenev, V.V., Dolbinina, V.V., Efremova, E.P., and Khodan, A.N., Optimization of superprotonic acid salts for fuel cell applications, Solid State Ionics, 2005, vol. 176, pp. 2871–2874.

    Article  CAS  Google Scholar 

  90. Lavrova, G.V., Russkikh, M.V., Ponomareva, V.G., and Uvarov, N.F., On the possibility of using protonic solid electrolyte CsHSO4 in hydrogen fuel cells, Russ. J. Electrochem., 2005, vol. 41, no. 5, pp. 485–489.

    Article  CAS  Google Scholar 

  91. Uda, T., Boysen, D.A., Chisholm, C.R.I., and Haile, S.M., Alcohol fuel cell at optimal temperature, Electrochem. Solid State Lett., 2006, vol. 9, pp. A261–A264.

    Article  CAS  Google Scholar 

  92. Lavrova, G.V. and Ponomareva, V.G., Surface and bulk conduction and thermodynamic properties of ionic salt CsH5(PO4)2, Russ. J. Electrochem., 2007, vol. 43, no. 4, pp. 454–461.

    Article  CAS  Google Scholar 

  93. Chisholm, C.R.I., Boysen, D.A., Papandrew, A.B., Zecevic, S., Cha, S.Y., Sasaki, K.A., Varga, A., Giapis, K.P., and Haile, S.M., From laboratory breakthrough to technological realization: the development path of solid acid fuel cells, Electrochem. Soc. Interface, 2009, vol. 18, pp. 53–59.

    CAS  Google Scholar 

  94. Yaroslavtsev, A.B. and Stenina, I.A., Complex phosphates with the NASICON structure (AxB2(PO4)3), Russ. J. Inorg. Chem., 2006, vol. 51, suppl. 1, pp. S97–S116.

    Article  Google Scholar 

  95. Stenina, I.A., Zhizhin, M.G., Lazoryak, B.I., and Yaroslavtsev, A.B., Phase transitions,structure and ion conductivity of zirconium hydrogen phosphates with the NASICON structure,H1 ± XZr2–XMX(PO4)3 · H2O (M = Nb,Y), Mater. Res. Bull., 2009, vol. 44, pp. 1608–1612.

    Article  CAS  Google Scholar 

  96. Baikov, Yu.M. and Egorov, V.M., Solid-hydroxide protonic conductors: superionic conductivity, phase transitions, isotopic effect, and self-organized microheterogeneity, Phys. Solid State, 2009, vol. 51, pp. 33–43.

    Article  CAS  Google Scholar 

  97. Baikov, Yu.M., Self diffusion of lithium, hydrogen and oxygen ions in crystalline lithium hydroxide, Phys. Solid State., 2010, vol. 52, pp. 2044–2057.

    Article  CAS  Google Scholar 

  98. Rusanov, A.L., Likhachev, D.Yu., and Myullen, K., Electrolytic proton-conducting membranes based on aromatic condensation polymers, Rus. Chem. Rev., 2002, vol. 71, pp. 862–877.

    Article  Google Scholar 

  99. Asensio, J.A., Borros, S., and Gomez-Romero, P., Proton-conducting membranes based on poly(2,5- benzimidazole) (ABPBIJ) and phosphoric acid prepared by direct acid casting, J. Membr. Sci., 2004, vol. 241, pp. 89–93.

    Article  CAS  Google Scholar 

  100. Ponomarev, I.I., Ponomarev, Iv.I., Volkova, Yu.A., Zharinova, M.Y., and Razorenov, D.Yu., Poly(Nphenylenebenzimidazoles) as an alternative to classical polybenzimidazoles, Mendeleev Commun., 2012, vol. 22, pp. 162–163.

    Article  CAS  Google Scholar 

  101. Ponomarev, I.I., Chalykh, A.E., Aliev, A.D., Gerasimov, V.K., Razorenov, D.Yu., Stadnichuk, V.I., Ponomarev, Iv.I., Volkova, Yu.A., and Khokhlov, A.R., Design of the MEAs of a fuel cell based on a polybenzimidazole, Dokl. Phys. Chem., 2009, vol. 429, no. 1, pp. 237–241.

    Article  CAS  Google Scholar 

  102. Weber, J., Kreuer, K.-D., Maier, J., and Thomas, A., Proton conductivity enhancement by nanostructural control of poly(benzimidazole)–phosphoric acid adducts, Adv. Mater., 2008, vol. 20, pp. 2595–2598.

    Article  CAS  Google Scholar 

  103. Marestin, C., Gebel, G., Diat, O., and Mercier, R., Sulfonated polyimides, Adv. Polym. Sci., 2008, vol. 216, pp. 185–258.

    CAS  Google Scholar 

  104. Kraytsberg, A. and Ein-Eli, Y., Review of advanced materials for proton exchange membrane fuel cells, Energy Fuels, 2014, vol. 28, pp. 7303–7330.

    Article  CAS  Google Scholar 

  105. Kabasawa, A., Saito, J., Yano, H., Miyatake, K., Uchida, H., and Watanabe, M., Durability of a novel sulfonated polyimide membrane in polymer electrolyte fuel cell operation, Electrochim. Acta, 2009, vol. 54, pp. 1076–1082.

    Article  CAS  Google Scholar 

  106. Makulova, S.A., Karavanova, Yu.A., Ponomarev, I.I., Stenina, I.A., Zharinova, M.Yu., Volkova, Yu.A., and Yaroslavtsev, A.B., Ionic conductivity of ion-exchange membranes based on polytriazole and poly(naththoilene imides), Russ. J. Inorg. Chem., 2016, vol 61, no. 10 (in press).

  107. Chen, X., Chen, K., Chen, P., Higa, M., Okamoto, K.-I., and Hirano, T.J., Effects of tetracarboxylic dianhydrides on the properties of sulfonated polyimides, Polym. Sci. A: Polym. Chem., 2010, vol. 48, pp. 905–915.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Additional information

Original Russian Text © I.A. Stenina, A.B. Yaroslavtsev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 3, pp. 241–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Yaroslavtsev, A.B. Low- and intermediate-temperature proton-conducting electrolytes. Inorg Mater 53, 253–262 (2017). https://doi.org/10.1134/S0020168517030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517030104

Keywords

Navigation