Skip to main content
Log in

Atomic Structure and Electronic Properties of Anionic Germanium–Zirconium Clusters

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents spatial structure optimization results and calculated electronic spectra for ZrGe n (n = 8–20) anion clusters. Comparison of density-functional calculation results and available experimental data allows us to identify real spatial structures of the clusters. The formation of stable endohedral ZrGe n clusters is possible for n ≥ 12. The clusters with a smaller number of germanium atoms predominantly have exohedral structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E., C60: buckminsterfullerene, Nature (London), 1985, vol. 318, pp. 162–163.

    Article  CAS  Google Scholar 

  2. Ma, S. and Wang, C., Structures of medium size germanium clusters, J. Mol. Struct.: THEOCHEM, 2006, vol. 767, pp. 75–79.

    Article  CAS  Google Scholar 

  3. Shvartsburg, A.A., Bei Liu, Zhong-Yi Lu, Cai-Zhuang Wang, Jarrold, M.F., and Kai-Ming Ho, Structures of germanium clusters: where the growth patterns of silicon and germanium clusters diverge, Phys. Rev. Lett., 1999, vol. 83, pp. 2167–2170.

    Article  CAS  Google Scholar 

  4. Kumar, V. and Kawazoe, Y., Metal-encapsulated caged clusters of germanium with large gaps and different growth behavior than silicon, Phys. Rev. Lett., 2002, vol. 88, pp. 235504–235507.

    Article  Google Scholar 

  5. Lu, J. and Nagase, S., Metal-doped germanium clusters MGens at the sizes of n = 12 and 10: divergence of growth patterns from the MSin clusters, Chem. Phys. Lett., 2003, vol. 372, pp. 394–398.

    Article  CAS  Google Scholar 

  6. Wang, J. and Han Ju-Guang, Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1–17), J. Phys. Chem. A, 2006, vol. 110, pp. 12670–12677.

    Article  CAS  Google Scholar 

  7. Wang, J. and Han Ju-Guang, Geometries, stabilities, and vibrational properties of bimetallic Mo2-doped Gen (n = 9–15) clusters: a density functional investigation, J. Phys. Chem. A, 2008, vol. 112, pp. 3224–3230.

    Article  CAS  Google Scholar 

  8. Xin-Juan Hou, Gopakumar, G., Lievens, P., and Minh Tho Nguyen, Chromium-doped germanium clusters CrGen (n = 1–5): geometry, electronic structure, and topology of chemical bonding, J. Phys. Chem. A, 2007, vol. 111, pp. 13544–13553.

    Google Scholar 

  9. Atobe, J., Koyasu, K., Furuse, S., and Nakajima, A., Anion photoelectron spectroscopy of germanium and tin clusters containing a transition-or lanthanide-metal atom; ZrGe- n (n = 8–20) and MSn- n (n = 15–17) (M = Sc–V, Y–Nb, and Lu–Ta), Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 9403–9410.

    Article  CAS  Google Scholar 

  10. Lee, C., Yang, W., and Parr, R.G., Development of the Colle–Salvetti conelation energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 37, pp. 785–789.

    Article  CAS  Google Scholar 

  11. Wachters, A.J.H., Gaussian basis set for molecular wavefunctions containing third-row atoms, J. Chem. Phys., 1970, vol. 52, pp. 1033–1036.

    Article  CAS  Google Scholar 

  12. Godbout, N., Salahub, D.R., Andzelm, J., and Wimmer, E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Can. J. Chem., 1992, vol. 70, pp. 560–571.

    Article  CAS  Google Scholar 

  13. Godfrey, S.M. and Hinchliffe, A., Density functional studies on the reagents Me3PX2 (where X = F, Cl, Br and I) in the gas phase and in solution, J. Mol. Struct.: THEOCHEM, 2006, vol. 761, pp. 1–5.

    Article  CAS  Google Scholar 

  14. Frisch, M.J. et al., Gaussian 03. Revision B03, Pittsburg: Gaussian Inc., 2003.

    Google Scholar 

  15. Reveles, J.U. and Khanna, S.N., Electronic counting rules for the stability of metal–silicon clusters, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, no. 3, paper 035435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Borshch.

Additional information

Original Russian Text © N.A. Borshch, S.I. Kurganskii, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 1, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borshch, N.A., Kurganskii, S.I. Atomic Structure and Electronic Properties of Anionic Germanium–Zirconium Clusters. Inorg Mater 54, 1–7 (2018). https://doi.org/10.1134/S0020168518010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518010028

Keywords

Navigation