Skip to main content
Log in

Magnesium Vapor Reduction of Niobium Oxide Compounds in the Range 540–680°C

  • Published:
Inorganic Materials Aims and scope

Abstract—

The pore structure of powders prepared via magnesium vapor reduction of Nb2O5 and Mg4Nb2O9 in the range 540–680°C has been studied in detail. The results demonstrate that lowering the reduction temperature slows down diffusion processes, which allows coarsening of the primary structure of the reduced oxide particles to be prevented, thereby increasing the volume and surface of pores less than 5 nm in diameter. Reducing Nb2O5 at a temperature of 680°C, we have obtained niobium powder with a specific surface area of 83.4 m2/g. As the reduction temperature is lowered further, the pore size decreases to the extent that most pores become filled with native Nb2O5 oxide and the specific surface area decreases. In the case of Mg4Nb2O9 reduction under such conditions, the pore size is such that the powder obtained upon leaching of magnesium oxide is in effect an amorphous Nb2O5 oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Nikishina, E.E., Drobot, D.V., and Lebedeva, E.N., Niobium and tantalum: state of the world market, fields of application, and raw sources. Part I, Russ. J. Non-Ferrous Met., 2013, no. 6, pp. 446–452. https://doi.org/10.3103/S1067821213060187

  2. Kumar, T.S., Balaji, T., Kumar, S.R., Kumar, A., and Prakash, T.L., Issues and challenges in the preparation of niobium for strategic applications, Int. J. Chem. Stud., 2013, vol. 1, no. 2, pp. 86–89. https://doi.org/10.1007/978-3-319-67870-2_2

    Article  Google Scholar 

  3. Gorkunov, V. and Munter, R., Calcium–aluminothermal production of niobium and mineral composition of the slag, Proc. Est. Acad. Sci., Chem., 2007, vol. 56, no. 3, pp. 142–156.

    CAS  Google Scholar 

  4. Schtazel, A. and Khight, H.F., An investigation of columbium as an electrolytic capacitor metal, J. Electrochem. Soc., 1961, vol. 108, no. 4, pp. 343–347.

    Article  Google Scholar 

  5. Jackson, N.F. and Hendy, J.C., The use of niobium as an anode material in liquid filled electrolytic capacitors, Electrocompon. Sci. Technol., 1974, vol. 1, no. 1, pp. 27–37.

    Article  CAS  Google Scholar 

  6. Pozdeev, Y., Comparison of tantalum and niobium solid electrolytic capacitors, T.I.C. Bull., 1998, no. 94, pp. 2–5.

  7. Serjak, W.A., Scheckter, L., Tripp, T.B., et al., Niobium, a new material for capacitors, Passive Comp. Ind., 2000, Nov./Dec., pp. 17–20.

  8. Zillgen, H., Stenzel, M., and Lohwasser, W., New niobium capacitors with stable electrical parameters, Act. Passive Electron. Compon., 2002, vol. 25, pp. 147–153. https://doi.org/10.1080/0882751021000001528

    Article  Google Scholar 

  9. Fischer, V., Starmer, H.D., Gerthsen, M., et al., Niobium as new material for electrolyte capacitors with nanoscale dielectric oxide layers, Proc. 7th Int. Conf. Properties and Applications of Dielectric Materials, Nagoya, 2003, s20-2.

  10. Elyutin, A.V., Patrikeev, Yu.B., Vorob’eva, N.S., et al., RF Patent 1 556 420, Byull. Izobret., 1994, no. 4.

  11. Grabis, J., Munterb, R., Blagoveshchenskiy, Yu., et al., Plasmochemical process for the production of niobium and tantalum nanopowders, Proc. Est. Acad. Sci., 2012, vol. 61, no. 2, pp. 137–145. https://doi.org/10.3176/proc.2012.2.06

    Article  CAS  Google Scholar 

  12. Yuan, B. and Okabe, T.H., Electrochemically assisted formation of fine niobium powder in molten salt, J. Electrochem. Soc., 2007, vol. 154, no. 1, pp. E1–E7. https://doi.org/10.1149/1.2364842

    Article  CAS  Google Scholar 

  13. Kolosov, V.N., Miroshnichenko, M.N., Orlov, V.M., et al., Effect of sodiothermic reduction conditions on characteristics of niobium powders, Rasplavy, 2008, no. 5, pp. 89–94.

  14. Yoon, J.S., Cho, S.W., Kim, Y.S., and Kim, B.I., The production of niobium powder and electric properties of niobium capacitors, Met. Mater. Int., 2009, vol. 15, no. 3, pp. 405–408. https://doi.org/10.1007/s12540-009-0405-0

    Article  CAS  Google Scholar 

  15. Yoon, J.S., Goto, Sh., and Kim, B.Il., Characteristic variation of niobium powder produced under various reduction temperature and amount of reductant addition, Mater. Trans., 2010, vol. 51, no. 2, pp. 354–358. https://doi.org/10.2320/matertrans.M2009192

    Article  CAS  Google Scholar 

  16. Yoon, J.S., The fabrication of niobium powder by sodiothermic reduction process, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, no. 2, pp. 265–269. https://doi.org/10.1016/j.ijrmhm.2009.10.009

    Article  CAS  Google Scholar 

  17. Yoon, J.S., Lee, G.H., Hong, S.J., et al., Characteristics of niobium powder used capacitors produced by metallothermic reduction in molten salt, Curr. Nanosci., 2014, vol. 10, no. 1, pp. 131–134.

    Article  CAS  Google Scholar 

  18. Baba, M., Ono, Y., and Suzuki, R.O., Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, pp. 466–470. https://doi.org/10.1016/j.jpcs.2004.06.042

    Article  CAS  Google Scholar 

  19. Baba, M., Kikuchi, T., and Suzuki, R.O., Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors, J. Phys. Chem. Solids, 2015, vol. 78, pp. 101–109. https://doi.org/10.1016/j.jpcs.2014.11.014

    Article  CAS  Google Scholar 

  20. Suzuki, N., Suzuki, R.O., Natsui, S., Kikuchi, T., Branched morphology of Nb powder particles fabricated by calciothermic reduction in CaCl2 melt, J. Phys. Chem. Solids, 2017, vol. 110, pp. 101–109. https://doi.org/10.1016/j.jpcs.2017.05.032

    Article  CAS  Google Scholar 

  21. Kryzhanov, M.V., Orlov, V.M., and Sukhorukov, V.V., Thermodynamic modeling of magnesiothermic reduction of niobium and tantalum from pentoxides, Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 379–383. https://doi.org/10.1134/S107042721003002X

    Article  CAS  Google Scholar 

  22. Orlov, V.M. and Sukhorukov, V.V., Magnesium-thermal preparation of niobium powders, Russ. Metall. (Engl. Transl.), 2010, no. 3, pp. 168–173. https://doi.org/10.1134/S0036029510030043

  23. Shekhter, L.N., Tripp, T.B., and Lanin, L.L., US Patent 6171363, 2001.

  24. Shekhter, L.N., Tripp, T.B., Lanin, L.L., et al., US Patent 6558447, 2003.

  25. Schnitter, C., Merker, U., and Michaelis, A., New niobium based materials for solid electrolyte capacitors, Proc. 22nd Capacitor and Resistor Technology Symp., New Orleans, 2002, pp. 26–31.

  26. Okabe, T.H., Iwata, S., Imagunbai, M., et al., Production of niobium powder by preform reduction process using various fluxes and alloy reductant, ISIJ Int., 2004, vol. 44, no. 2, pp. 285–293. https://doi.org/10.2355/isijinternational.44.285

    Article  CAS  Google Scholar 

  27. Haas, D. and Schnitter, C., Production of capacitor grade tantalum and niobium powders using the new magnesium vapour reduction process, Proc. EMC, Dresden, 2005.

  28. Luidold, S., Antrekowitsch, H., and Ressel, R., Production of niobium powder by magnesiothermic reduction of niobium oxides in a cyclone reactor, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, nos. 5–6, pp. 423–432. https://doi.org/10.1016/j.ijrmhm.2006.11.00

    Article  CAS  Google Scholar 

  29. Kumar, T.S., Kumar, S.R., Rao, M.L., and Prakash, T.L., Preparation of niobium metal powder by two-stage magnesium vapor reduction of niobium pentoxide, J. Metall., 2013, vol. 2013, p. 629341. https://doi.org/10.1155/2013/629341

    Article  CAS  Google Scholar 

  30. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Magnesium-vapor reduction of niobium oxide compounds, Dokl. Chem., 2015, vol. 465, no. 1, pp. 257–260. https://doi.org/10.1134/S0012500815110026

    Article  CAS  Google Scholar 

  31. Park, S.J., Hwang, S.M., Wang, J., et al., Metallic niobium powder reduced by atmospheric magnesium gas with niobium pentoxide powder, Mater. Trans., 2021, vol. 62, no. 1, pp. 34–40. https://doi.org/10.2320/matertrans.MT-M2020241

    Article  CAS  Google Scholar 

  32. Orlov, V.M., Kryzhanov, M.V., and Knyazeva, A.I., Tantalum powders with a mesoporous structure, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, pp. 814–818. https://doi.org/10.1134/S207020511605018X

    Article  CAS  Google Scholar 

  33. Orlov, V.M., Kryzhanov, M.V., Knyazeva, A.I., and Osaulenko, R.N., Niobium powders of mesoporous structure, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 5, pp. 782–787. https://doi.org/10.1134/S2070205118040111

    Article  CAS  Google Scholar 

  34. Müller, R., Bobeth, M., Brumm, H., et al., Kinetics of nanoscale structure development during Mg-vapour reduction of tantalum oxide, Int. J. Mater. Res., 2007, vol. 98, no. 11, pp. 1138–1145. https://doi.org/10.3139/146.101567

    Article  Google Scholar 

  35. Orlov, V.M. and Kryzhanov, M.V., Influence of the precursor composition and the reduction conditions on the characteristics of magnesium-thermic niobium powders, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 7, pp. 596–601. https://doi.org/10.1134/S0036029516070107

  36. Delheusy, M., Stierle, A., Kasper, N., et al., X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces, Appl. Phys. Lett., 2008, vol. 92, p. 101911. https://doi.org/10.1063/1.2889474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Kiselev, E.N. Magnesium Vapor Reduction of Niobium Oxide Compounds in the Range 540–680°C. Inorg Mater 58, 1266–1273 (2022). https://doi.org/10.1134/S0020168522120081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522120081

Keywords:

Navigation