Skip to main content
Log in

Temporal Polarization Phase-shifting for Digital Speckle Pattern Interferometry

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A temporal 4-step polarization phase-shifting technique for digital speckle pattern interferometry (DSPI) with one fixed and two rotatable polarizers is proposed. The fixed polarizer is used to filter out the reflected object beam in one polarization direction, and the two rotatable polarizers are used to perform the 4 times phase shifts. The Jones derivation illustrates the object surface phase distribution can be derived from the 4 speckle pattern interferograms, which are bright, gloomy, bright, and gloomy successively. The experiment shows that the proposed temporal polarization phase-shifting technique is able to extract the phase change caused by a tiny out-of-plane displacement. Unlike the PZT-driven phase-shifting, the polarization phase-shifting in this method is stable and accurate in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Karuppanan, U., Unni, S.N., and Angarai, G.R., J. Med. Imaging, 2017, vol. 4, no. 1, p. 016001. https://doi.org/10.1117/1.JMI.4.1.016001

    Article  Google Scholar 

  2. Petit, J., Montay, G., and François M., Int. J. Solids Struct., 2014, vol. 51, no. 2, p. 540. https://doi.org/10.1016/j.ijsolstr.2013.10.029

    Article  Google Scholar 

  3. Kim, K., Choi, T., Na, M.G., and Jung, H., Nucl. Eng. Technol., 2015, vol. 47, no. 1, p. 115. https://doi.org/10.1016/j.net.2014.09.001

    Article  Google Scholar 

  4. Languy, F., Vandenrijt, J.-F., Thizy, C., and Rochet, J., Opt. Eng., 2016, vol. 55, no. 12, p. 121704. https://doi.org/10.1117/1.OE.55.12.121704

    Article  ADS  Google Scholar 

  5. Lianxiang Yang, Xie Xin, Lianqing Zhu, Sijin Wu, and Yonghong Wang, Chin. J. Mech. Eng., 2014, vol. 27, no. 1, p. 1. https://doi.org/10.3901/CJME.2014.01.001

    Article  Google Scholar 

  6. Takeda, M. and Yamamoto, H., Appl. Opt., 1994, vol. 33, no. 34, p. 7829. https://doi.org/10.1364/AO.33.007829

    Article  ADS  Google Scholar 

  7. Kao Chih-Cheng, Yeh Gym-Bin, Lee Shu-Sheng, Lee Chih-Kung, Yang Ching-Sang, and Wu Kuang-Chong, Appl. Opt., 2002, vol. 41, no. 1, p. 46. https://doi.org/10.1364/AO.41.000046

    Article  ADS  Google Scholar 

  8. Wang Liusheng, Jambunathan, K., Dobbins, B.N., and He Shi, P., Opt. Eng., 1996, vol. 35, no. 8, p. 2333. https://doi.org/10.1117/1.600809

    Article  ADS  Google Scholar 

  9. Noe Alcala Ochoa and Huntley, J.M., Opt. Eng., 1998, vol. 37, no. 9, p. 2501. https://doi.org/10.1117/1.602025

  10. Yuji She and Huntley, J.M., Opt. Eng., 2004, vol. 43, no. 12, p. 2998. https://doi.org/10.1117/1.1810532

    Article  ADS  Google Scholar 

  11. Suwen Zhao, Desheng Wen, Shaolan Zhu, and Shitong Liang. Proc. SPIE, 2011, vol. 8192, p. 8192G. https://doi.org/10.1117/12.902439

    Article  ADS  Google Scholar 

  12. Serrano-García, D.I., Martínez-García, A., Toto-Arellano, N.-I., and Yukitoshi Otani, Opt. Eng., 2014, vol. 53, no. 11, p. 112202. https://doi.org/10.1117/1.oe.53.11.112202

    Article  ADS  Google Scholar 

  13. Qian Kemao, Miao Hong, and Wu Xiaoping, Opt. Laser Eng., 1999, vol. 31, no. 4, p. 289. https://doi.org/10.1016/S0143-8166(99)00022-6

    Article  Google Scholar 

  14. Lopez-Ortiz, B., Toto-Arellano, N.-I., Flores Muñoz, V.H., Martinez Garcia, A., Garcia Lechuga, L., and Martinez Dominguez, J.-A., Optik, 2014, vol. 125, no. 24, p. 7227. https://doi.org/10.1016/j.ijleo.2014.07.131

    Article  ADS  Google Scholar 

  15. Peizheng Yan, Keyi Wang, Pengcheng Cui, Jiangang Gao, Jiajun Ma, and Qijin Zhang, Opt. Laser Eng., 2015, vol. 73, p. 75. https://doi.org/10.1016/j.optlaseng.2015.04.011

    Article  Google Scholar 

  16. Pavan Kumar, Y., Sarvendra Singh Negi, Pandurang Kamath, M., and Sanjib Chatterjee, Appl. Opt., 2016, vol. 55, no. 35, p. 10053. https://doi.org/10.1364/AO.55.010053

    Article  ADS  Google Scholar 

  17. Nandini Ghosh, Sanjukta Sarkar, and Kallol Bhattacharya, Opt. Eng., 2012, vol. 51, no. 8, p. 085601. https://doi.org/10.1117/1.OE.51.8.085601

    Article  ADS  Google Scholar 

  18. Santa Sircar and Kallol Bhattacharya, Opt. Eng., 2015, vol. 54, no. 11, p. 113112. https://doi.org/10.1117/1.OE.54.11.113112

  19. Sanjukta Sarkar and Bhattacharya, K., Optik, 2014, vol. 125, no. 1, p. 285. https://doi.org/10.1016/j.ijleo.2013.06.040

  20. Tania Das, and Kallol Bhattacharya, Opt. Eng., 2016, vol. 55, no. 7, p. 077102. https://doi.org/10.1117/1.OE.55.7.077102

    Article  ADS  Google Scholar 

  21. Lei Liu, Aijun Zeng, Linglin Zhu, Qiang Song, and Huijie Huang, Proc. SPIE, 2013, vol. 8906, p. 89060Z. https://doi.org/10.1117/12.2033009

    Article  ADS  Google Scholar 

  22. Kemao Qian, Opt. Laser Eng., 2007, vol. 45, no. 2, p. 304. https://doi.org/10.1016/j.optlaseng.2005.10.012

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grants nos. 51705025 and 51675055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, L., Wu, S. et al. Temporal Polarization Phase-shifting for Digital Speckle Pattern Interferometry. Instrum Exp Tech 62, 537–541 (2019). https://doi.org/10.1134/S0020441219040250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219040250

Navigation