Skip to main content
Log in

Measuring the Spectrum of the Soft Component of X-Ray Plasma Radiation at the MIFIST-0 Tokamak

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The technique and results of measuring the soft X-ray spectra of plasma on the small spherical MIFIST-0 tokamak are presented. The measurements were carried out by the gray filter method using a multichannel spectrometer based on LiF (Mg, Ti) thermoluminescent lithium fluoride detectors. This technique made it possible to study X-ray radiation in the energy range of quanta 0.2−15 keV. The spectrum of the soft X-ray component was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Luce, T.C., Phys. Plasmas, 2011, vol. 18, no. 3, p. 030501. https://doi.org/10.1063/1.3551571

    Article  ADS  Google Scholar 

  2. Shimomura, Y., Murakami, Y., Polevoi, A.R., Barabaschi, P., Mukhovatov, V., and Shimada, M., Plasma Phys. Controlled Fusion, 2001, vol. 43, no. 12A, p. A385. https://doi.org/10.1088/0741-3335/43/12A/329

    Article  ADS  Google Scholar 

  3. Hussain, S., Sadiq, M., and Shah, S.I.W., J. Phys.: Conf. Ser., 2015, vol. 591, no. 1, p. 012009. https://doi.org/10.1088/1742-6596/591/1/012009

    Article  Google Scholar 

  4. Strelkov, V.S. and Lysenko, S.E., Osnovy tekhniki termoyadernogo eksperimenta (Fundamentals for Thermonuclear Experiment Technique), Moscow: National Research Nuclear Univ. “Moscow Engineering Physics Institute,” 2015.

  5. Zhao, H., Zhou, T., Liu, Y., Ti, A., Ling, B., Feng, X., Liu, A.D., Zhou, C., and Hu, L., Fusion Eng. Des., 2019, vol. 149, p. 111336. https://doi.org/10.1016/j.fusengdes.2019.111336

    Article  Google Scholar 

  6. Peacock, N.J., Robinson, D.C., Forrest, M.J., Wilcock, P.D., and Sannikov, V.V., Nature, 1969, vol. 224, no. 5218, p. 488. https://doi.org/10.1038/224488a0

    Article  ADS  Google Scholar 

  7. Han, X., Hu, A., Li, D., Xiao, S., Zang, Q., Zhao, J., Hsieh, C., Gong, X., Hu, L., and Xu, G., IEEE Trans. Plasma Sci., 2018, vol. 46, no. 2, p. 406. https://doi.org/10.1109/TPS.2018.2791618

    Article  ADS  Google Scholar 

  8. Bitter, M., Hsuan, H., Hill, K.W., and Zarnstorff, M., Phys. Scr., 1993, vol. 47, p. 87. https://doi.org/10.1088/0031-8949/1993/T47/014

    Article  Google Scholar 

  9. Meshcheryakov, A.I., Vafin, I.Yu., and Grishina, I.A., Instrum. Exp. Tech., 2018, vol. 61, no. 6, pp. 842–848. https://doi.org/10.1134/S0020441218050196

    Article  Google Scholar 

  10. Balovnev, A.V., Grigor’eva, I.G., and Salakhutdinov, G.Kh., Instrum. Exp. Tech., 2015, vol. 58, no. 2, p. 252. https://doi.org/10.1134/S0020441215020049

    Article  Google Scholar 

  11. Balovnev, A.V., Grigor’eva, I.G., and Salakhutdinov, G.Kh., Instrum. Exp. Tech., 2015, vol. 58, no. 1, p. 98. https://doi.org/10.1134/S002044121501025X

    Article  Google Scholar 

  12. Kirneva, N.A., Vorobjev, G.M., Ganin, S.A., Drozd, A.S., Kudashev, I.S., Kulagin, V.V., and Kurnaev, V.A., Probl. At. Sci. Technol., Ser.: Thermonucl. Fusion, 2020, vol. 43, no. 3, p. 90. https://doi.org/10.21517/0202-3822-2020-43-3-90-100

    Article  Google Scholar 

  13. Kurnaev, V.A., Nikolaeva, V.E., Krat, S.A., Vovchenko, E.D., Kaziev, A.V., Prishvitsyn, A.S., Vorob’ev, G.M., Stepanova, T.V., and Gvozdevskaya, D.S., Izv. Vyssh. Uchebn. Zaved., Fiz., 2021, vol. 64, no. 1 (757), pp. 118–124. https://doi.org/10.17223/00213411/64/1/11814

  14. Grigoryeva I.G., Khil’ko, M.V., and Salakhutdinov G.K., J. Phys.: Conf. Ser., 2019, vol. 1390, no. 1, p. 2. https://doi.org/10.1088/1742-6596/1390/1/012105

    Article  Google Scholar 

  15. Khan, R., Nazir, M., Ali, A., Hussain, S., and Vorobyev, G.M., Fusion Eng. Des., 2018, vol. 126, p. 10. https://doi.org/10.1016/j.fusengdes.2017.11.002

    Article  Google Scholar 

  16. Krat, S.A., Pryshvitsyn, A.S., Alieva, A.I., Efimov, N.E., Vinitskiy, E.A., Bulgadaryan, D.G., Vorobyov, G.M., and Kurnaev, V.A., Phys. At. Nucl., 2021, vol. 84, no. 12, p. 1995. https://doi.org/10.1134/S1063778821120024

    Article  Google Scholar 

  17. Grigorieva, I.G., Makarov, A.A., Korf, A.N., and Salakhutdinov, G.Kh., Instrum. Exp. Tech., 2022, vol. 65, no. 4, pp. 621–624. https://doi.org/10.1134/ S002044122204011X.

  18. Diagnostika termoyadernoi plazmy (Diagnostics of Thermonuclear Plasma), Luk’yanov, S.Yu., Ed., Moscow: Energoatomizdat, 1985.

  19. Dnestrovskii, Yu.N. and Kostomarov, D.P., Matematicheskoe modelirovanie plazmy (Mathematical Simulation for Plasma), Moscow: Nauka, 1993.

  20. Bobrovskii, G.A., Razumova, K.A., and Sannikov, V.V., Fiz. Plazmy (Moscow), 1976, vol. 2, no. 6, p. 897.

    ADS  Google Scholar 

  21. Dreiser, G., Proc. 2nd United Nations Int. Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, vol. 1, p. 170.

  22. Meshcheryakov, A.I., Vafin, I.Yu., and Grishina, I.A., Instrum. Exp. Tech., 2020, vol. 63, no. 5, pp. 689–694. https://doi.org/10.1134/S002044122005019X

    Article  Google Scholar 

Download references

Funding

This study was supported by the “Priority 2030” program, National Nuclear Research University MEPhI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kh. Salakhutdinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, N.E., Grigoryeva, I.G., Makarov, A.A. et al. Measuring the Spectrum of the Soft Component of X-Ray Plasma Radiation at the MIFIST-0 Tokamak. Instrum Exp Tech 66, 257–262 (2023). https://doi.org/10.1134/S0020441223020148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223020148

Navigation