Skip to main content
Log in

Microwave photoresistance in a two-dimensional electron system with anisotropic mobility

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of microwave radiation on magnetotransport in single GaAs quantum wells with anisotropic mobility, whose maximum corresponds to the \([1\bar 10]\) direction and minimum to the [110] direction, is investigated using the Van der Pauw method. In samples shaped as squares with sides oriented along the \([1\bar 10]\) and [110] directions, giant oscillations of magnetoresistance arise under the effect of a microwave field for the both \([1\bar 10]\) and [110] orientations of the measuring current I ac. In the anisotropic two-dimensional system under study, the relative amplitude of microwave photoresistance oscillations in a magnetic field weakly depends on the orientation of I ac. At a temperature of 4.2 K and a microwave frequency of 130 GHz, magnetic field intervals characterized by close-to-zero resistance manifest themselves only for the case of the [110] orientation of I ac. The aforementioned experimental results are qualitatively explained by a quasi-one-dimensional potential modulation of the two-dimensional electron gas in the [110] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Zudov, R. R. Du, J. A. Simmons, et al., Phys. Rev. B 64, 201311(R) (2001).

  2. R. G. Mani, J. H. Smet, K. von Klitzing, et al., Nature 420, 646 (2002).

    Article  ADS  Google Scholar 

  3. A. A. Bykov, D. R. Islamov, D. V. Nomokonov, and A. K. Bakarov, Pis’ma Zh. Éksp. Teor. Fiz. 86, 695 (2007) [JETP Lett. 86, 608 (2007)].

    Google Scholar 

  4. W. Zhang, M. A. Zudov, L. N. Pfeiffer, et al., Phys. Rev. Lett. 98, 106804 (2007).

    Google Scholar 

  5. S. I. Dorozhkin, A. A. Bykov, I. V. Pechenezhskiĭ, and A. K. Bakarov, Pis’ma Zh. Éksp. Teor. Fiz. 85, 705 (2007) [JETP Lett. 85, 576 (2007)].

    Google Scholar 

  6. R. L. Willett, J. W. P. Hsu, D. Natelson, et al., Phys. Rev. Lett. 87, 126803 (2001).

    Google Scholar 

  7. A. A. Bykov, A. K. Bakarov, A. V. Goran, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 182 (2001) [JETP Lett. 74, 164 (2001)].

    Google Scholar 

  8. A. C. Churchill, G. H. Kim, A. Kurobe, et al., J. Phys.: Condens. Matter 6, 6131 (1994).

    Article  ADS  Google Scholar 

  9. A. Ballestad, B. J. Ruck, M. Adamcuk, et al., Phys. Rev. B 65, 205302 (2002).

  10. G. Apostolopoulos, J. Herfort, L. Daweritz, et al., Phys. Rev. Lett. 84, 3358 (2000).

    Article  ADS  Google Scholar 

  11. A. K. Bakarov, A. A. Bykov, N. D. Aksenova, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 794 (2003) [JETP Lett. 77, 662 (2003)].

    Google Scholar 

  12. A. A. Bykov, A. K. Bakarov, A. V. Goran, et al., Pis’ma Zh. Éksp. Teor. Fiz. 78, 165 (2003) [JETP Lett. 78, 134 (2003)].

    Google Scholar 

  13. N. M. Sotomayor, G. M. Gusev, J. R. Leite, et al., Phys. Rev. B 70, 235326 (2004).

    Google Scholar 

  14. V. I. Ryzhiĭ, Fiz. Tverd. Tela (Leningrad) 11, 2577 (1969) [Sov. Phys. Solid State 11, 2078 (1970)].

    Google Scholar 

  15. O. Bierwagen, R. Pomraenke, S. Eilers, et al., Phys. Rev. B 70, 165307 (2004).

  16. M. A. Zudov, R. R. Du, L. N. Pfeiffer, et al., Phys. Rev. Lett. 90, 046807 (2003).

    Google Scholar 

  17. R. G. Mani, J. H. Smet, K. von Klitzing, et al., Phys. Rev. B 69, 193304 (2004).

  18. A. A. Bykov, A. K. Bakarov, D. R. Islamov, and A. I. Toropov, Pis’ma Zh. Éksp. Teor. Fiz. 84, 466 (2006) [JETP Lett. 84, 391 (2006)].

    Google Scholar 

  19. P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).

    Article  ADS  Google Scholar 

  20. J. Q. Zhang, S. Vitkalov, A. A. Bykov, et al., Phys. Rev. B 75, 081305 (2007).

  21. S. A. Studenikin, M. Potemski, A. Sachrajda, et al., Phys. Rev. B 71, 245313 (2005).

    Google Scholar 

  22. L. I. Magarill, I. A. Panaev, and S. A. Studenikin, J. Phys.: Condens. Matter 7, 1101 (1995).

    Article  ADS  Google Scholar 

  23. J. P. Robinson, M. P. Kennett, N. R. Cooper, et al., Phys. Rev. Lett. 93, 036804 (2004).

    Google Scholar 

  24. J. Dietel, L. I. Glazman, F. W. J. Hekking, et al., Phys. Rev. B 71, 045329 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bykov.

Additional information

Original Russian Text © A.A. Bykov, D.R. Islamov, A.V. Goran, A.K. Bakarov, 2007, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 12, pp. 891–895.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, A.A., Islamov, D.R., Goran, A.V. et al. Microwave photoresistance in a two-dimensional electron system with anisotropic mobility. Jetp Lett. 86, 779–782 (2008). https://doi.org/10.1134/S002136400724006X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136400724006X

PACS numbers

Navigation