Skip to main content
Log in

Change in the sign of the magnetoresistance effect in bilayer superconductor/ferromagnet structures under change in the type of the domain structure in the ferromagnet

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The magnetoresistance effects in the bi- and trilayer hybrid planar superconductor/ferromagnet (S/F) structures based on Py (permalloy) and Nb near the superconducting transition temperature T C are considered. It has been experimentally shown that the sign of the observed magnetoresistance peaks in the bilayer S/F systems changes from negative to positive at the permalloy layer thickness corresponding to the change in the type of domain walls from Néel to Bloch. For the Néel walls at the ferromagnet coercive fields, the negative magnetoresistance effect, which is due to a decrease in the depairing action of the exchange field E ex, is observed in the S/F bilayers. For the Bloch domain walls, the magnetoresistance of the bilayer S/F structures is determined by the dissipative motion of Abrikosov vortices in the superconducting layer. In the trilayer F/S/F structures, the magnetoresistance is mainly due to the suppression of the superconducting order parameter in the superconducting layer under the action of the accumulation of the spin-polarized carriers near the S/F interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Grunberg et al., Phys. Rev. Lett. 57, 2442 (1986).

    Article  ADS  Google Scholar 

  2. M. N. Babich et al., Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  3. A. Barthelemy et al., J. Magnet. Magnet. Mater. 242, 68 (2002).

    Article  ADS  Google Scholar 

  4. S. S. P. Parkin, K. P. Roche, M. G. Samant, et al., J. Appl. Phys. 85, 5828 (1999).

    Article  ADS  Google Scholar 

  5. A. I. Buzdin, A. V. Vegyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).

    Article  ADS  Google Scholar 

  6. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).

    Article  ADS  Google Scholar 

  7. J. Y. Gu, C. Y. You, J. S. Jiang, et al., Phys. Rev. Lett. 89, 267001 (2002).

  8. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, et al., Phys. Rev. Lett. 86, 2427 (2001).

    Article  ADS  Google Scholar 

  9. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

    Article  ADS  Google Scholar 

  10. E. B. Sonin, Phys. Rev. B 66, 100504 (2002).

    Google Scholar 

  11. V. V. Ryazanov, V. A. Oboznov, A. S. Prokofiev, and S. V. Dubonos, Pis’ma Zh. Éksp. Teor. Fiz. 77, 43 (2003) [JETP Lett. 77, 39 (2003)].

    Google Scholar 

  12. V. Peña et al., Phys. Rev. Lett. 94, 57002 (2005).

  13. A. Yu. Rusanov, S. Habraken, and J. Aarts, Phys. Rev. B 73, 060505R (2006).

  14. F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2001).

    Article  ADS  Google Scholar 

  15. T. Champel and M. Eschrig, Phys. Rev. B 71, 220506, (2005).

  16. T. Trunk et al., J. Appl. Phys. 89, 7606 (2001).

    Article  ADS  Google Scholar 

  17. A. Yu. Rusanov, M. Hesselberth, and J. Aarts, Phys. Rev. Lett. 93, 057002 (2004).

  18. J. Aarts and A. Yu. Rusanov, C. R. Physique 7, 99 (2006).

    Article  ADS  Google Scholar 

  19. R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).

    Google Scholar 

  20. R. O’Handley, Modern Magnetic Materials (Wiley, New York, 2000).

    Google Scholar 

  21. Th. G. S. M. Rijks, R. Coehoorn, M. J. M. de Jong, and W. J. M. de Jonge, Phys. Rev. B 51, 283 (1995).

    Article  ADS  Google Scholar 

  22. L. N. Bulaevskii and E. M. Chudnovsky, Phys. Rev. B 63, 012502 (2001).

    Google Scholar 

  23. M. Redjdal, J. H. Giusti, M. F. Ruane, and F. B. Humphrey, IEEE Trans Magn. 39, 2684 (2003).

    Article  ADS  Google Scholar 

  24. The value of ξGL(0) was determined from the measurements of the second critical field H C2 for isolated Nb films.

  25. A. Yu. Rusanov, M. B. S. Hesselberth, and J. Aarts, Phys. Rev. B 70, 024510 (2004).

  26. M. R. Scheinfein et al., Phys. Rev. B 43, 3395 (1991).

    Article  ADS  Google Scholar 

  27. D. Stamopoulos, E. Manios, and M. Pissas, Phys. Rev. B 75, 184504 (2007).

    Google Scholar 

  28. D. Stamopoulos, E. Manios, and M. Pissas, Phys. Rev. B 75, 014501 (2007).

    Google Scholar 

  29. R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).

    Google Scholar 

  30. A. Singh et al., Appl. Phys. Lett. 91, 152504 (2007).

  31. G.-X. Miao, K. S. Yoon, T. S. Santos, and J. S. Moodera, Phys. Rev. Lett. 98, 267001 (2007).

    Google Scholar 

  32. V. A. Vasko et al., Phys. Rev. Lett. 78, 1134 (1997).

    Article  ADS  Google Scholar 

  33. J. Y. Gu, J. A. Caballero, R. D. Slater, et al., Phys. Rev. B 66, 140507 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Rusanov.

Additional information

Original Russian Text © A.Yu. Rusanov, T.E. Golikova, S.V. Egorov, 2008, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 87, No. 3, pp. 204–209.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusanov, A.Y., Golikova, T.E. & Egorov, S.V. Change in the sign of the magnetoresistance effect in bilayer superconductor/ferromagnet structures under change in the type of the domain structure in the ferromagnet. Jetp Lett. 87, 175–180 (2008). https://doi.org/10.1134/S0021364008030120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364008030120

PACS numbers

Navigation