Skip to main content
Log in

Grain boundary layers in nanocrystalline ferromagnetic zinc oxide

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The complete solubility of an impurity in a polycrystal increases with decreasing grain size, because the impurity dissolves not only in the crystallite bulk but also on the grain boundaries. This effect is especially strong when the adsorption layers (or the grain boundary phases) are multilayer. For example, the Mn solubility in the nanocrystalline films (where the size of grains is ∼20 nm) is more than three times greater than that in the ZnO single crystals. The thin nanocrystalline Mn-doped ZnO films in the Mn concentration range 0.1–47 at % have been obtained from organic precursors (butanoates) by the “liquid ceramic” method. They have ferromagnetic properties, because the specific area of the grain boundaries in them is greater than the critical value [B.B. Straumal et al., Phys. Rev. B 79, 205206 (2009)]. The high-resolution electron transmission microscopy studies show that the ZnO nanocrystalline grains with the wurtzite lattice are separated by amorphous layers whose thickness increases with the Mn concentration. The morphology of these layers differs greatly from the structure of the amorphous prewetting films on the grain boundaries in the ZnO:Bi2O3 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, et al., Science 287, 1019 (2000).

    Article  ADS  Google Scholar 

  2. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Rev. B 79, 205206 (2009).

    Article  ADS  Google Scholar 

  3. S. K. Mandal, A. K. Das, T. K. Nath, et al., J. Appl. Phys. 100, 104315 (2006).

    Article  ADS  Google Scholar 

  4. S. Venkataraj, N. Ohashi, I. Sakaguchi, et al., J. Appl. Phys. 102, 014905 (2007).

    Article  ADS  Google Scholar 

  5. J. Alaria, P. Turek, M. Bernard, et al., Chem. Phys. Lett. 415, 337 (2005).

    Article  ADS  Google Scholar 

  6. S. Kolesnik and B. Dabrowski, J. Appl. Phys. 96, 5379 (2004).

    Article  ADS  Google Scholar 

  7. M. H. Kane, W. E. Fenwick, M. Strassburg, et al., Phys. Status Solidi B 244, 1462 (2007).

    Article  ADS  Google Scholar 

  8. A. I. Savchuk, P. N. Gorley, V. V. Khomyak, et al., Mater. Sci. Eng. B 109, 196 (2004).

    Article  Google Scholar 

  9. G. Lawes, A. S. Risbud, A. P. Ramirez, et al., Phys. Rev. B 71, 045201 (2005).

    Article  ADS  Google Scholar 

  10. O. D. Jayakumar, H. G. Salunke, R. M. Kadam, et al., Nanotechnology 17, 1278 (2006).

    Article  ADS  Google Scholar 

  11. M. Pal, Jpn. J. Appl. Phys. 44, 7901 (2005).

    Article  ADS  Google Scholar 

  12. B. Babič-Stojič, D. Milivojevič, J. Blanusa, et al., J. Phys.: Condens. Matter 20, 235217 (2008).

    Article  ADS  Google Scholar 

  13. Z. Yan, Y. Ma, D. Wang, et al., Appl. Phys. Lett. 92, 081911 (2008).

    Article  ADS  Google Scholar 

  14. M. Diaconu, H. Schmidt, H. Hochmuth, et al., J. Magn. Magn. Mater. 307, 212 (2006).

    Article  ADS  Google Scholar 

  15. M. Diaconu, H. Schmidt, H. Hochmuth, et al., Thin Solid Films 486, 117 (2005).

    Article  ADS  Google Scholar 

  16. Q. Xu, H. Schmidt, S. Zhou, et al., Appl. Phys. Lett. 92, 082508 (2008).

    Article  ADS  Google Scholar 

  17. N. Gopalakrishnan, J. Elanchezhiyan, K. P. Bhuvana, et al., Scr. Mater. 58, 930 (2008).

    Article  Google Scholar 

  18. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, et al., J. Appl. Phys. 108, 073923 (2010).

    Article  ADS  Google Scholar 

  19. H. Wang and Y.-M. Chiang, J. Am. Ceram. Soc. 81, 89 (1998).

    Article  Google Scholar 

  20. J. P. Gambino, W. D. Kingery, G. E. Pike, et al., J. Am. Ceram. Soc. 72, 642 (1989).

    Article  Google Scholar 

  21. E. Olsson and G. L. Dunlop, J. Appl. Phys. 66, 3666 (1989).

    Article  ADS  Google Scholar 

  22. B. B. Straumal, A. A. Mazilkin, P. B. Straumal, et al., Int. J. Nanomanufact. 2, 253 (2008).

    Article  Google Scholar 

  23. J. Luo and Y.-M. Chiang, Ann. Rev. Mater. Res. 38, 227 (2008).

    Article  ADS  Google Scholar 

  24. H. Qian, J. Luo, and Y.-M. Chiang, Acta Mater. 56, 862 (2008).

    Article  Google Scholar 

  25. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Acta Mater. 56, 6246 (2008).

    Article  Google Scholar 

  26. L. Lábár, Microsc. Microanal. 14, 287 (2008).

    Article  Google Scholar 

  27. B. B. Straumal, B. Baretzky, A. A. Mazilkin, et al., J. Eur. Ceram. Soc. 29, 1963 (2009).

    Article  Google Scholar 

  28. B. B. Straumal, Grain Boundary Phase Transitions (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  29. K. Masuko, A. Ashida, T. Yoshimura, et al., J. Magn. Magn. Mater. 310, E711 (2007).

    Article  ADS  Google Scholar 

  30. A. C. Mofor, A. El-Shaer, A. Bakin, et al., Superlatt. Microstruc. 39, 381 (2006).

    Article  ADS  Google Scholar 

  31. L. R. Reddy, P. Prathap, Y. P. V. Subbaiah, et al., Solid State Sci. 9, 718 (2007).

    Article  ADS  Google Scholar 

  32. M. Yuan, W. Fu, H. Yang, et al., Mater. Lett. 63, 1574 (2009).

    Article  Google Scholar 

  33. H. Saal, M. Binnewies, M. Schrader, et al., Chem. Eur. J. 15, 6408 (2009).

    Article  Google Scholar 

  34. D. McLean, Grain Boundaries in Metals (Clarendon, Oxford, 1957).

    Google Scholar 

  35. D. R. Clarke, J. Am. Ceram. Soc. 70, 15 (1987).

    Article  Google Scholar 

  36. M. Bobeth, D. R. Clarke, and W. Pompe, J. Am. Ceram. Soc. 82, 1537 (1999).

    Article  Google Scholar 

  37. A. Avishai, C. Scheu, and W. D. Kaplan, Acta Mater. 53, 1559 (2005).

    Article  Google Scholar 

  38. M. Baram and W. D. Kaplan, J. Mater. Sci. 41, 7775 (2006).

    Article  ADS  Google Scholar 

  39. J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).

    Article  ADS  Google Scholar 

  40. N. Eustathopoulos, Int. Met. Rev. 28, 189 (1983).

    Google Scholar 

  41. B. Straumal, T. Muschik, W. Gust, et al., Acta Metall. Mater. 40, 939 (1992).

    Article  Google Scholar 

  42. B. Straumal, D. Molodov, and W. Gust, J. Phase Equilibria 15, 386 (1994).

    Article  Google Scholar 

  43. S. V. Divinski, M. Lohmann, Chr. Herzig, et al., Phys. Rev. B 71, 104104 (2005).

    Article  ADS  Google Scholar 

  44. B. B. Straumal, A. A. Mazilkin, O. A. Kogtenkova, et al., Phil. Mag. Lett. 87, 423 (2007).

    Article  ADS  Google Scholar 

  45. B. Straumal, R. Valiev, O. Kogtenkova, et al., Acta Mater 56, 6123 (2008).

    Article  Google Scholar 

  46. B. Straumal, E. Rabkin, W. Lojkowski, et al., Acta mater 45, 1931 (1997).

    Article  Google Scholar 

  47. J. Luo, V. K. Gupta, D. H. Yoon, et al., Appl. Phys. Lett. 87, 231902 (2005).

    Article  ADS  Google Scholar 

  48. B. B. Straumal, B. S. Bokstein, A. B. Straumal, et al., Pis’ma Zh. Eksp. Teor. Fiz. 88, 615 (2008) [JETP Lett. 88, 537 (2008)].

    Google Scholar 

  49. V. V. Belousov, JETP Lett. 88, 297 (2008).

    Article  ADS  Google Scholar 

  50. G. A. López, E. J. Mittemeijer, and B. B. Straumal, Acta Mater. 52, 4537 (2004).

    Article  Google Scholar 

  51. B. B. Straumal, B. Baretzky, O. A. Kogtenkova, et al., J. Mater. Sci. 45, 2057 (2010).

    Article  ADS  Google Scholar 

  52. B. B. Straumal, O. A. Kogtenkova, A. B. Straumal, et al., J. Mater. Sci. 45, 4271 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Additional information

Original Russian Text © B.B. Straumal, A.A. Myatiev, P.B. Straumal, A.A. Mazilkin, S.G. Protasova, E. Goering, B. Baretzky, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 92, No. 6, pp. 438–443.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumal, B.B., Myatiev, A.A., Straumal, P.B. et al. Grain boundary layers in nanocrystalline ferromagnetic zinc oxide. Jetp Lett. 92, 396–400 (2010). https://doi.org/10.1134/S0021364010180074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010180074

Keywords

Navigation